

54733-20BA1S Rev.06 05/2025

Embedded Soft. ab Rev. 1.00.00 Device Description ab Rev. 01

Band 1: Sicherheitshandbuch	1
Band 2: SENSseries installieren	2
Band 3: Bedienung mit HART®-Kommunikator	3

Ł

Allgemeine Hinweise

Sehr geehrte Kundin, sehr geehrter Kunde Wir bedanken uns für den Kauf des Messsystems SENSseries LB 480 aus dem Hause BERTHOLD TECHNOLOGIES.

Zum Lieferumfang gehört auch diese Betriebsanleitung. Bewahren Sie die Betriebsanleitung immer griffbereit auf.

Zur Vermeidung von Personen- und Sachschäden beachten Sie unbedingt die in dieser Betriebsanleitung gegebenen Warn- und Sicherheitshinweise. Sie sind mit GEFAHR, WARNUNG, VORSICHT oder HINWEIS besonders gekennzeichnet. Im Band 1, Kapitel 1.2 "Bedeutung weiterer, in dieser Dokumentation verwendeter Symbole", finden Sie zusammengefasst alle zu beachtenden Gefahrenquellen und Hinweise zum Umgang mit ihnen.

Machen Sie sich bitte vor der Installation anhand der Betriebsanleitung mit dem Produkt vertraut.

Sollte Ihnen trotz sorgfältigem Studium etwas unklar sein, so setzen Sie sich bitte mit uns in Verbindung.

Ihr BERTHOLD Team

54733-20BA1S - 4 05.2025

Band 1

Sicherheitshandbuch

1	Über	diese Bedienungsanleitung 1 – 13
	1.1	Kennzeichnungen und Warnhinweise1 – 13
	1.2 Sym	Bedeutung weiterer, in dieser Dokumentation verwendeter bole1 – 14
		Bedeutung der Warnzeichen auf den Detektoren und nlerabschirmungen1 – 14
	1.4	In dieser Bedienungsanleitung verwendete Begriffe $1-15$
	1.5	Generelle Hinweise
2	Besti	mmungsgemäße Verwendung1 – 17
3	Qual	ifikation des Personals1 – 19
	3.1	Fachkundige Personen 1 – 19
	3.2	Sachkundige Personen1 – 20
	3.3	Autorisierte Personen
4	Trans	sport und Montage1 – 21
5	Explo	osionsschutz1 – 23

6	Elektrische Installation
7	Funktionale Sicherheit 1 – 115 7.1 Anwendungsbereich 1 – 115 7.2 Verwendung 1 – 116 7.3 Mit geltende Dokumente und Unterlagen 1 – 117 7.4 Identifikation des Detektors 1 – 117 7.5 Projektierung 1 – 118 7.6 Geräteverhalten im Betrieb 1 – 124 7.7 Montage und Verdrahtung 1 – 124 7.8 Inbetriebnahme 1 – 125 7.9 Wiederkehrende Prüfungen 1 – 126 7.10 Reparatur 1 – 126 7.11 Datenblatt der Funktionalen Sicherheit LB 480 1 – 128 7.12 Anhänge 1 – 130 7.13 Zertifikat Funktionale Sicherheit 1 – 132
8	Sichtprüfung
9	Wiederkehrender Funktionstest
10	Strahlenschutz 1 – 139 10.1 Grundlagen und Richtlinien 1 – 139 10.2 Montage der Abschirmung 1 – 141 10.3 Verschließmechanismus testen 1 – 144 10.4 Sicherheitsvorkehrungen 1 – 145 10.5 Diebstahlsicherung 1 – 145 10.6 Unfälle, Verlust, Schaden, Feuer, Diebstahl 1 – 146 10.7 Abschirmung und Strahler 1 – 148 10.8 Dichtheitsprüfung 1 – 149
11	Strahlertausch
12	Strahlerahgahe 1 – 157

Band 2

SENSseries installieren

1	Syste	embeschreibung	2 – 163
	1.1	Messsystem	2 – 163
	1.2	SENSseries-Hardware	2 – 166
	1.3	Messprinzip	2 – 169
	1.4	Messanordnungen	2 – 170
	1.5	Technische Daten	2 – 171
	1.6	Detektorcodes	2 – 175
	1.7	Nomenklatur der SENSseries LB 480	2 – 176
2	Mor	ntage	2 – 179
	2.1	Transport zur Montagestelle	2 – 181
	2.2	Detektorschutz	2 – 183
	2.3	CrystalSENS (Punktdetektor)	2 – 186
	2.4	Wasserkühlung	2 – 189
	2.5	Abschirmung	2 – 191
3	Elek	trische Installation	2 – 195
	3.1	Leitungseinführungen	2 – 195
	3.2	Anschlussklemmen	2 – 197
	3.3	Detektor anschließen	2 – 199
4	Repa	aratur, Wartung und Instandhaltung	2 – 203
	4.1	Sicherheitshinweise	2 – 204
	4.2	Kompletten Detektor tauschen	2 – 205
	4.3	Elektronikeinsatz tauschen	2 – 207
	4.4 2 –	Kristall-Multiplier-Kombination tauschen (für C 210	CrystalSENS)
	4.5	Detektor prüfen	2 – 211
	4.6	Kundendienst	2 – 214
	4.7	Reparatur, Rückversand	2 – 215
5	Tech	nnische Informationen	2 – 217
	5.1	TI LB 480 Grenzhöhenschalter	2 – 217
6	Zube	ehör	2 – 235
	6.1	Kabelverschraubungen	2 – 235
	6.2	Endschalter für Pneumatik	

Band 3 Bedienung mit HART®-Kommunikator

1	HAR	T [®] -Kommunikation	3	– 24	7
	1.1	HART®-Protokoll	3	- 24	8
		RT [®] -Kommunikator3 – 248			
	1.3 3 –	HART [®] -Kommunikator anschließen, ein- und auss 250	cha	lten	
	1.4	HART [®] -Kommunikator bedienen	3	- 25	0
	1.5	Parametersätze archivieren	3	– 25	1
2	Men	nüstruktur	3	- 25	5
	2.1	Hinweise zur Menüstruktur	3	- 25	5
	2.2	Menü-Übersicht	3	- 25	6
	2.3	Start-Menü	3	- 26	1
	2.4	Live Display	3	- 26	2
	2.5	Device Config	3	- 26	4
	2.6	Setup	3	- 26	5
	2.7	Quick Start	3	- 26	6
	2.8	Quick Start, Step 1	3	- 26	6
	2.9	Quick Start, Step 2	3	- 26	7
	2.10	Quick Start, Step 3	3	- 26	9
	2.11	Quick Start, Step 4	3	- 26	9
	2.12	Sensor Configuration	3	– 27	2
	2.13	B Date & Time	3	- 27	2
	2.14	Sensor Settings	3	– 27	3
	2.15	Signal Condition	3	– 27	6
	2.16	Signal Parameter	3	– 27	7
	2.17	Radiation Interference	3	– 27	9
	2.18	Source Exchange	3	– 28	1
	2.19	Build Up Alarm	3	- 28	2
	2.20	Cal Parameter	3	– 28	3
	2.21	Cal Points	3	- 28	6
	2.22	Cal Settings	3	- 28	8
	2.23	Product Conditions	3	- 29	3
	2.24	Adapt Calibration	3	- 29	6
	2.25	I/O Setup	3	- 29	6
	2.26	Current Output	3	- 29	7
		Digital Output			
		Temp. Threshold Settings			

2.29 Digital Input	3 –	302
2.30 HART Interface	3 –	303
2.31 Service	3 –	304
2.32 PMT	3 –	305
2.33 Sensor Temperature	3 –	305
2.34 Test	3 –	306
2.35 Test Settings	3 –	306
2.36 I/O Test Settings	3 –	308
2.37 Plateau	3 –	309
2.38 Plateau Measurement	3 –	310
2.39 Plateau View	3 –	311
2.40 Plateau Information	3 –	311
2.41 Meas Parameter	3 –	311
2.42 Meas Data	3 –	312
2.43 Meas Settings	3 –	313
2.44 Build Up Alarm	3 –	314
2.45 Access	3 –	315
2.46 Identification	3 –	317
2.47 Location	3 –	317
2.48 Device Information	3 –	318
2.49 Device Revision	3 –	318
2.50 Diagnostic	3 –	319
2.51 Operating Status	3 –	319
2.52 Ext dev status	3 –	320
2.53 Device Variables Status	3 –	320
2.54 Config Change Status	3 –	321
2.55 Lock Device Status	3 –	321
2.56 Error Status	3 –	322
2.57 Log	3 –	325
2.58 Error Log	3 –	325
2.59 Modification Log	3 –	326
Inbetriebnahme über HART®-Kommunikator	3 _	. 327
3.1 Schritte für die Inbetriebnahme		
3.1 Schille für die inbetriebrianne	5	<i>321</i>
Kurzanleitung für die Kalibrierung	3 –	329
Kalibrieren	3 –	331
5.1 Kalibrierung vorbereiten	3 –	332
5.2 Kalibrierung mit Quick Start		
5.3 Funktion der Messung sicher stellen		
-		

3

5

6	Funl	ktionale Abläufe	3 – 345
	6.1	Plateaumessung durchführen	3 – 345
	6.2	Master Reset	3 – 347
7	Erläı	uterungen	3 – 349
	7.1	Nulleffekt (Background)	3 – 349
	7.2	Bedingungen für den Leerabgleich	3 – 351
	7.3	Schüttkegelmessung	3 – 353
	7.4	Fremdstrahlungserkennung	3 – 354
	7.5	Zeitkonstante	3 – 356
	7.6	Softwarestände	3 – 357
8	Fehl	erbehandlung	3 – 361
	8.1	Betriebsarten der Fehlerbehandlung	3 – 361
	8.2	Detektorverhalten bei Fehlern	3 – 362
	8.3	Fehlersuche	3 – 369
	8.4	Reset	3 – 370
	8.5	Betriebsarten während der Messung	3 – 370
	8.6	Fehlerquittierung	3 – 370
	8.7	Fehlerstrom	3 – 371
9	Inbe	triebnahmeprotokoll	3 – 373

Band 1 Sicherheitshandbuch

54733-20BA1S 1 - 12 05.2025 1

Über diese Bedienungsanleitung

1.1 Kennzeichnungen und Warnhinweise

Die in dieser Bedienungsanleitung verwendeten Zeichen und Schriftarten haben folgende Bedeutung:

▶ fordert Sie auf, eine Tätigkeit auszuführen.

1, 2, 3, ... kennzeichnet den Bezug auf eine Grafik.

kennzeichnet Aufzählungen.

kursive Schrift kennzeichnet Hervorhebungen.

fette Schrift kennzeichnet Befehle oder Menüpunkte.

fette Kursive kennzeichnen Benutzereingaben.

Der Begriff BERTHOLD TECHNOLOGIES steht in dieser Bedienungsanleitung stellvertretend für die Firma BERTHOLD TECHNOLOGIES GmbH & Co. KG.

Zur Vermeidung von Personen- und Sachschäden beachten Sie unbedingt die in dieser Bedienungsanleitung gegebenen Warn- und Sicherheitshinweise. Sie sind mit GEFAHR, WARNUNG, VORSICHT oder HINWEIS besonders gekennzeichnet.

▲ GEFAHR

Weist auf eine unmittelbar drohende Gefahr hin. Wenn sie nicht vermieden wird, sind Tod oder schwerste Körperverletzungen die Folge.

MARNUNG

Weist auf eine möglicherweise gefährliche Situation hin. Wenn sie nicht vermieden wird, können Tod oder schwerste Körperverletzungen die Folge sein.

↑ VORSICHT

Weist auf eine möglicherweise gefährliche Situation hin. Wenn sie nicht vermieden wird, können leichte oder mittlere Körperverletzungen die Folge sein.

HINWEIS

Weist auf eine Situation hin, bei der Sachschäden die Folge sein können, wenn die Hinweise nicht beachtet werden.

WICHTIG

Absätze mit diesem Symbol geben wichtige Informationen zum Produkt oder zur Handhabung des Produkts.

Tipp

Enthält Anwendungstipps und andere besonders nützliche Informa-

1.2 Bedeutung weiterer, in dieser Dokumentation verwendeter Symbole

Warnhinweis: nicht unter schwebende Lasten treten

Warnhinweis: radioaktive Strahlung

Warnhinweis: Ex-Schutz

Warnhinweis: Quetschgefahr

Gebot: Spannungsfrei schalten

Gebot: Schutzhelm tragen

Gebot: Sicherheitsschuhe tragen

Bedeutung der Warnzeichen auf den Detektoren und Strahlerabschirmungen

Warnhinweis: radioaktive Strahlung

Dieser Warnhinweis befindet sich z.B. auf der Strahlerabschirmung.

Warnhinweis: lesen Sie vor der Installation die Bedienungsanleitung Dieser Warnhinweis befindet sich z.B. auf oder im Anschlussraum des Detektors.

1.4 In dieser Bedienungsanleitung verwendete Begriffe

CrystalSENS Standard Punktdetektor-Ausführung in der SENSseries LB 480.

UniSENS Standard Stabdetektor-Ausführung in der SENSseries LB 480.

SuperSENS Hochempfindlicher Detektor mit großvolumigem Plastik-Szintillator

150 x 150 mm für große Rohr- oder Behälterdurchmesser.

TowerSENS Stabdetektor mit besonders großer möglicher Messlänge. Im

Gegensatz zu Multi-Detektor-Anordnungen ist hier nur ein Detektor

erforderlich.

NaI = Natriumjodid-Kristall = Szintillator

Szintillationsdetektoren sind für Gamma-Strahlung sehr empfindli-

che Sonden.

Isotop Substanz der Strahlenquelle, z.B. Kobalt 60 (Co-60) oder Cäsium

137 (Cs-137).

Zählrate Auf eine Sekunde normierter Wert für die Anzahl der Impulse.

Background / NulleffektDie durch die natürliche Umgebungsstrahlung verursachte Zählrate.

Cps / lps Einheit für die Zählrate: *I*mpulse *p*ro *S*ekunde (Counts per Second).

Werkseinstellung In der Werkseinstellung sind alle Parameter mit Standardwerten

voreingestellt. In den meisten Fällen wird damit die Kalibrierung des Detektors wesentlich erleichtert. Trotzdem muss eine Kalibrierung

immer durchgeführt werden.

mSv Milli-Sievert: Die Einheit gibt die Dosisleistung (Äquivalentdosis) an.

mrem Milli-Rem (roentgen equivalent in man): veraltete Einheit für die

Dosisleistung (100 mrem = 1 mSv).

MBq Mega-Becquerel: Die Einheit gibt die Aktivität eines Strahlers an.

Jedes Bq entspricht einem Zerfall pro Sekunde, d.h., 1MBq ent-

spricht einer Million Zerfälle.

mCi Milli-Curie: Veraltete Einheit für die Aktivität eines Strahlers

(1mCi = 37MBq).

ATEX Atmosphère explosible: wird als Oberbegriff für die ATEX-Produkt-

richtlinie 94/9/EG und die ATEX-Betriebsrichtlinie 1999/92/EG verwendet. Die Richtlinien enthalten Festlegungen zu Geräten und Komponenten für den Einsatz in explosionsgefährdeten Bereichen.

FM Factory Mutual: ist ein amerikanisches Industriesachversicherungs-

unternehmen, das unter anderem Zertifizierungen im Bereich

Explosionsschutz vornimmt.

CSA

Canadian Standard Association: setzt Normen und Standards, die für Kanada (und Amerika) von Bedeutung sind, unter anderem die Richtlinien für Explosionsschutz und Niederspannung.

PMT

Photomultiplier oder nur Multiplier: wandelt die im Detektor von der Strahlung erzeugten Lichtblitze in elektrische Signale um.

HV

HV = High Voltage

Der Multiplier wird mit Hochspannung betrieben, damit Lichtblitze in elektrische Impulse umgeformt werden können.

Die Regelung der Hochspannung sorgt für eine temperatur- und alterungsstabile Messung. Jeder Multiplier hat eine etwas andere Empfindlichkeit und muss deshalb bei einer anderen Hochspannung betrieben werden.

aktiv / passiv (Source / Sink)

Je nach Detektortyp kann der Stromausgang als Stromquelle, oder als Stromsenke ausgelegt sein. Hierbei werden folgende Begriffe synonym verwendet:

Stromquelle: aktiv / Source ModeStromsenke: passiv / Sink Mode

1.5 Generelle Hinweise

In diesem Band sind die wichtigsten Sicherheitsmaßnahmen zusammengefasst. Er ergänzt die entsprechenden Vorschriften, zu deren Studium das verantwortliche Personal *verpflichtet* ist.

Beachten Sie unbedingt:

- die nationalen Sicherheits- und Unfallverhütungsvorschriften
- die nationalen Montage- und Errichtungsvorschriften (z.B. EN 60079)
- die allgemein anerkannten Regeln der Technik
- die Angaben zu Transport, Montage, Betrieb, Wartung, Instandhaltung und Strahlerabgabe in dieser Bedienungsanleitung
- die Sicherheitshinweise und Angaben in dieser Bedienungsanleitung sowie die beiliegenden technischen Zeichnungen und Verdrahtungspläne
- die Kennwerte, Grenzwerte und die Angaben für die Betriebsund Umgebungsbedingungen auf den Typenschildern und in den Datenblättern
- die Hinweisschilder auf den Geräten

Je nach Anwendungsbereich sind die entsprechenden Kapitel zu berücksichtigen.

2

Bestimmungsgemäße Verwendung

Das Messsystem SENSseries LB 480 ist ein Detektor, der je nach Ausführung für verschiedene Messaufgaben einsetzbar ist:

- Füllstandsmessung
- Grenzwertüberwachung
- Dichtemessung

Das Messsystem dient zur kontinuierlichen Überwachung und Erkennung von Füllständen bzw. Grenzständen von Flüssigkeiten und Schüttgütern in Behältern oder zur Bestimmung der Dichte von Flüssigkeiten in Behältern und Rohrleitungen. Der Verwendungszweck wird bei der Projektierung durch BERTHOLD TECHNOLOGIES festgelegt, das ausgelieferte System darf später nur für diesen Zweck eingesetzt werden.

Wird der Detektor auf eine Weise verwendet, die nicht bei der Projektierung vorgesehen war und die nicht in der vorliegenden Bedienungsanleitung beschrieben wird, so ist der Schutz des Detektors beeinträchtigt und der Garantieanspruch geht verloren.

BERTHOLD TECHNOLOGIES haftet bzw. garantiert lediglich, dass die Systeme der SENSseries LB 480 den veröffentlichten Spezifikationen entsprechen. Die Detektoren der SENSseries dürfen nur in unbeschädigtem, trockenem und sauberem Zustand installiert werden. Umbauten und Veränderungen an den Systemkomponenten sind nicht gestattet. Reparaturen am Detektor dürfen nur vorgenommen werden, wenn dies die Betriebsanleitung ausdrücklich zulässt.

Normenkonformität

Die Normen und Richtlinien, denen die SENSseries entspricht, sind in der CE-Erklärung aufgeführt.

Warnung vor Fehlgebrauch

Bestimmungswidrig und zu verhindern ist:

- Die Verwendung unter anderen als den durch den Hersteller in seinen technischen Unterlagen, Datenblättern, Betriebs- und Montageanleitungen und in anderen spezifischen Vorgaben genannten Bedingungen und Voraussetzungen.
- Die Instandsetzung von Detektoren, die im Ex-Bereich eingesetzt werden, durch Personen, die nicht von BERTHOLD TECHNOLOGIES autorisiert waren.
- Die Verwendung in beschädigtem oder korrodiertem Zustand.
- Der Betrieb mit geöffnetem oder mit unzureichend verschlossenem Deckel.
- Der Betrieb mit unzureichend festgezogenen Adaptern und Kabelverschraubungen.
- Der Betrieb ohne die vom Hersteller vorgesehenen Sicherheitsvorkehrungen.
- Bestehende Sicherheitseinrichtungen zu manipulieren oder zu umgehen.

Wartung

Die Messsysteme der SENSseries LB 480 dürfen ausschließlich von sachkundigen Personen (siehe *Kapitel 3.2, Seite 1-20*) installiert, gewartet und repariert werden.

Reparatur

Ersatzteile für im Ex-Bereich eingesetzte Detektoren dürfen ausschließlich vom Service der Fa. BERTHOLD TECHNOLOGIES montiert werden oder von Personen, die von BERTHOLD TECHNOLOGIES dazu autorisiert wurden. Falls dies nicht möglich ist, müssen Sie den kompletten Detektor tauschen oder zur Reparatur ins Herstellerwerk schicken.

Parametereinstellungen

Änderungen an der Parametereinstellung dürfen ausschließlich mit genauer Kenntnis dieser Bedienungsanleitung sowie genauer Kenntnis über das Verhalten eines angeschlossenen Reglers und die möglichen Einflüsse auf den zu steuernden Betriebsprozess vorgenommen werden!

Strahler und Abschirmungen

Dieses Messsystem verwendet radioaktive Strahlenquellen. Die Strahlenschutzhinweise in dieser Bedienungsanleitung und die diesbezüglichen gesetzlichen Vorschriften sind daher streng zu beachten, siehe auch *Kapitel 8, "Sichtprüfung"*, ab *Seite 1-135*.

54733-20BA1S 05.2025 3

Qualifikation des Personals

In dieser Bedienungsanleitung wird an verschiedenen Stellen auf die Qualifikation des Personals verwiesen, das mit den verschiedenen Aufgaben bei der Installation und Wartung betraut werden kann.

Dabei werden drei Gruppen unterschieden:

- 1. Fachkundige Personen, siehe Kapitel 3.1.
- 2. Sachkundige Personen, siehe Kapitel 3.2.
- 3. Autorisierte Personen, siehe Kapitel 3.3.

Die folgenden Kapitel erläutern die Bedeutung dieser Begriffe und die Voraussetzungen für den jeweiligen Personenkreis.

WICHTIG

Für alle Arbeiten an und mit den Messsystemen der SENSseries LB 480 sind mindestens fachkundige Personen erforderlich, die von einer sachkundigen oder autorisierten Person angeleitet werden.

3.1 Fachkundige Personen

Fachkundige Personen sind z.B. Monteure oder Schweißer, die verschiedene Aufgaben bei Transport, Montage und Installation der Messsysteme SENSseries LB 480 unter Anleitung einer autorisierten Person übernehmen können. Es kann sich dabei auch um Baustellenpersonal handeln. Die betreffenden Personen müssen Erfahrungen im Transport und der Montage von schweren Bauteilen besitzen.

Bei Ex-Geräten müssen die Personen zusätzlich Kenntnisse über den Umgang mit diesen Geräten haben, z.B., dass die Geräte keine mechanischen Schäden (Schlag o.Ä.) bekommen dürfen.

WICHTIG

Fachkundige Personen müssen immer von einer mindestens sachkundigen Person angeleitet werden.

Beim Umgang mit radioaktiven Stoffen muss zusätzlich der Strahlenschutzbeauftragte (Radiation Safety Officer) hinzugezogen werden.

3.2 Sachkundige Personen

Sachkundig sind Personen dann, wenn sie durch ihre fachliche Ausbildung ausreichende Kenntnisse auf dem geforderten Gebiet besitzen und mit den einschlägigen nationalen Arbeitsschutzvorschriften, Unfallverhütungsvorschriften, Richtlinien und anerkannten Regeln der Technik vertraut sind. Sie müssen in der Lage sein, die Ergebnisse ihrer Arbeit sicher beurteilen zu können und sie müssen mit dem Inhalt dieser Bedienungsanleitung vertraut sein.

3.3 Autorisierte Personen

Autorisierte Personen sind Personen, die entweder aufgrund gesetzlicher Vorschriften für die entsprechende Tätigkeit vorgesehen sind oder durch BERTHOLD TECHNOLOGIES für bestimmte Tätigkeiten zugelassen wurden. Beim Umgang mit strahlendem Material ist zusätzlich der Strahlenschutzbeauftragte (Radiation Safety Officer) hinzuzuziehen.

4

Transport und Montage

Das Gewicht der Strahlerabschirmung beträgt je nach Ausführung bis zu mehreren 100kg. Beachten Sie deshalb Folgendes:

- Die Tragfähigkeit der Behälterwände bzw. der Halterungen muss für die Montage des Strahlers mit der Abschirmung und des Detektors geeignet sein. Systemteile können sonst herabstürzen und zu schweren Verletzungen mit Todesfolge führen.
- Stellen Sie daher sicher, dass die mechanische Stabilität der Befestigungsvorrichtungen dem Gewicht der Abschirmung angepasst ist.

Beachten Sie außerdem:

- Beim Abladen schwerer Systemteile niemals unter schwebende Last treten!
- Nur geprüfte und auf die Transportgewichte abgestimmte Anschlagmittel verwenden.
- Ausreichende Sicherheitsabstände einhalten.
- Schutzhelm und Sicherheitsschuhe tragen.
- Bei allen Verwendungsarten immer für gute Standsicherheit sorgen.
- Die vorbereiteten Befestigungsmöglichkeiten nutzen.
- Bei Montage und Installation von schweren und unhandlichen Baugruppen mit mindestens zwei Personen arbeiten.
- Systemkomponenten müssen vibrationsfrei montiert werden.
- Beim Öffnen und Schließen des Anschlussraumes den Deckel festhalten, damit er nicht herunter fallen kann.

5

Explosionsschutz

SENSseries

LB 480 - .. 1C LB 480 - .. 2C LB 480 - .. 3C LB 480 - .. 4C LB 480 - .. FA LB 480 - .. GA

Sicherheitshandbuch

Explosionsschutz

für (Class I) Zone 1 / Zone 21 für Class I, II, III Division 1 ATEX / IECex / NEC / CEC

Id.-Nr. 54733BA16

Rev.-Nr.: 08 05.2025

- (bg) Инструкции за безопасност за употреба в потенциално експлозивни райони. Това ръководство за безопасност е и на разположение на официалните езици на Европейския съюз.
- (cs) Bezpečnostní pokyny pro použití v oblastech, kde hrozí nebezpečí výbuchu. Tato příručka s bezpečnostními pokyny je k dispozici i v úředních jazycích Evrospké unie.
- (da) Skkerhedsvejledning til brug i eksplosionsfarlige omgivelser. Denne sikkerhedsmanual findes på alle officielle sprog i det Europæiske fælleskab.
- (de) Sicherheitshinweise für den Einsatz in explosionsgefährdeten Bereichen. Dieses Sicherheitshandbuch ist auch in den Amtssprachen der europäischen Gemeinschaft erhältlich.
- (el) Υποδείξεις ασφάλειας για χρήση σε περιοχές με κίνδυνο έκρηξης. Αυτό το εγχειρίδιο ασφάλειας διατίθεται επίσης στις επίσημες γλώσσες της Ευρωπαϊκής Ένωσης.
- (en) Safety instructions for use in potentially explosive areas. This safety manual is available also in the official languages of the European Community.
- (es) Instrucciones de seguridad para el uso en áreas explosibles. El presente manual de seguridad está disponible también en las lenguas oficiales de la Comunidad Europea.
- (et) Ohutusjuhised kasutamiseks plahvatusohtlikes piirkondades. Käesolev ohutuskäsiraamat on saadaval ka Euroopa Ühenduse ametlikes keeltes.
- (fi) Räjähdysvaarallisilla alueilla käyttöä koskevat turvallisuusohjeet. Tämä turvaohjekirja on saatavilla myös Euroopan yhteisön virallisilla kielillä.
- (fr) Consignes de sécurité relatives à une utilisation en zones explosives. Le présent manuel de sécurité est également disponible dans les langues officielles de la communauté européenne.
- (ga) Treoracha sábháilteachta le haghaidh úsáide I limistéir inphléasctha Tá an lámhleabhar sábháilteachta seo ar fáil i dteangacha oifigiúla an Aontais Eorpaigh, chomh maith.
- (hr) Sigurnosne instrukcije za korištenje u
 potencijalno eksplozivnim podruğima.
 Ovaj sigurnosni prirumik takoder je dostupan
 u oficijelnim jezicima Europske unije.

- (hu) Biztonsági utasítások robbanásveszélyes területeken történő alkalmazáshoz. Ez a biztonsági kézikönyv az Európai Közösség hivatalos nyelvein is rendelkezésre áll.
- (it) Istruzioni per l'impiego in ambienti a rischio di deflagrazione. Il presente manuale contiene le disposizioni di sicurezza ed è disponibile in tutte le lingue ufficiali della comunità europea.
- (lt) Saugumo nurodymai naudojimui potencialiai sprogiose zonose. Šį saugumo vadovą taip pat galima gauti Europos Bendrijos oficialiomis kalbomis.
- (Iv) Drošības noteikumi piemērošanai jomās, kas saistītas ar sprādzienbīstamību. Šī drošības noteikumu rokasgrāmata ir pieejama arī citās Eiropas Kopienas oficiālajās valodās.
- (mt) Istruzzjonijiet dwar is-sigurtà li għandhom jintużaw f'żoni potenzjalment splussivi. Dan il-manwal tas-sigurtà huwa disponibbli wkoll fl-ilsna ufficjali kollha tal-Komunità Ewropea.
- (nl) Veiligheidsinstructies voor de inzet in gebieden met gevaar voor explosies Dit veiligheidshandboek is ook in officiële talen in de EuropeseGemeenschap verkrijgbaar.
- (pl) Przepisy bezpieczeństwa dotyczące użytkowania na obszarach zagrożonych wybuchem. Niniejsza instrukcja bezpieczeństwa dostępna jest również w językach urzędowych Unii Europejskiej.
- (pt) Indicações de Segurança para a utilização em áreas potencialmente explosivas. Este Guia de Segurança também está disponível nas línguas oficiais da Comunidade Europeia.
- (ro) Instructiuni de siguranță pentru utilizarea în zone periculoase. Acest manual de siguranță este de asemenea disponibil în limbile oficiale ale Comunității Europene.
- (sk) Bezpečnostné pokyny pri použití vo výbušnom prostredí. Táto bezpečnostná príručka je k dispozícii aj v úradných jazykoch Európskej únie.
- (sl) Varnostna navodila za uporabo v eksplozijsko ogroženih območjih. Ta varnostni priročnik je na voljo tudi v uradnih jezikih Evropske unije.
- (sv) Säkerhetshänvisningar till användning i områden som är utsatt för exlposionsfara. Denna handbok finns även tillgänglig i alla officiella språk av den europäiska gemenskapen.

5.1 Konformitätserklärung

5.1.1 Explosionsgefährdete Bereiche

BERTHOLD TECHNOLOGIES GmbH & Co. KG

Calmbacher Straße 22 75323 Bad Wildbad, Germany Phone +49 7081 177-0 info@Berthold.com www.Berthold.com

EU-Konformitätserklärung EU-Declaration of Conformity

Nr./No.: CE20023-07

Hiermit erklären wir in alleiniger Verantwortung, dass die Bauart des nachfolgend bezeichneten Geräts, in der von uns in den Verkehr gebrachten Ausführung den unten genannten einschlägigen Harmonisierungsvorschriften der EU entspricht.

Bei eigenmächtigen Änderungen oder nicht bestimmungsgemäßen Gebrauch verliert diese Erklärung ihre Gültigkeit.

We hereby declare, under our sole responsibility, that the design of the following device placed on the market by us complies with the relevant harmonized rules of the EU.

Unauthorized modifications or unintended use of the product makes this declaration invalid

Hersteller
Manufacturer

Produktbezeichnung
Product name

BERTHOLD TECHNOLOGIES GmbH & Co. KG
Calmbacher Str. 22, D-75323 Bad Wildbad, Germany

SENSseries Detektoren
(ATEX)
SENSseries Detectors
(ATEX)

Typenbezeichnung / Modell Type / model

LB480-xx-ex-xx-xx-xx

e = $\frac{1}{1}$ beliebiges Zeichen außer 0 (Null), F, G, Z $\frac{1}{1}$ x = $\frac{1}{1}$ beliebiges Zeichen any character except 0 (zero), F, G, Z

Richtlinie / Verordnu directive / regulation		angewendete Normen applied standards
ATEX	2014/34/EU	EN IEC 60079-0:2018 EN 60079-1:2014 + AC:2018 EN IEC 60079-07:2015 + A1:2018 EN 60079-11:2012 EN 60079-31:2014
EMV EMC	2014/30/EU	EN IEC 61326-1:2021 Namur NE 021:2017
RoHS	2011/65/EU	

notifizierte Stelle / Nummer Notified body / number	Maßnahme measure		
PTB, Germany / 0102	EU-Baumusterprüfbescheinigung EU Type Examination		
PTB, Germany / 0102	Qualitätssicherung	gültig bis	16.05.2025
	Quality Assurance	valid until	16/05/2025
DEKRA, Netherlands / 0344	Qualitätssicherung	gültig ab	01.07.2024
	Quality Assurance	valid from	01/07/2024

Diese Erklärung wird in Verantwortung für den Hersteller ausgestellt durch This declaration is issued by the manufacturer released by

Bad Wildbad, 10.05.2024

Ort und Datum Place and date Tobias Stephan

Leiter F&E Head of R&D

Registergericht / Court of Registration
Persönlich haftende Gesellschafterin / Fully liable Associates
Registergericht / Court of Registration
Geschäftsführung / Management
USt.-1d-Nr. / VAT Reg. No.
Deutsche Steuernummer / German Tax No.
WEEE-Reg. No.

Stuttgart HRA 330991 Berthold Technologies Verwaltungs-GmbH Stuttgart HRB 331520 Thomas Bogner DE813050511 49038/08038 DE99468690

5.1.2 Nicht Explosionsgefährdete Bereiche

BERTHOLD TECHNOLOGIES GmbH & Co. I

Nr./No.: CE20023-08

Calmbacher Straße 22 75323 Bad Wildbad, Germany Phone +49 7081 177-0 info@Berthold.com www.Berthold.com

EU-Konformitätserklärung EU-Declaration of Conformity

Hiermit erklären wir in alleiniger Verantwortung, dass die Bauart des nachfolgend bezeichneten Geräts, in der von uns in den Verkehr gebrachten Ausführung den unten genannten einschlägigen Harmonisierungsvorschriften der EU entspricht.

Bei eigenmächtigen Änderungen oder nicht bestimmungsgemäßen Gebrauch verliert diese Erklärung ihre Gültigkeit.

We hereby declare, under our sole responsibility, that the design of the following device placed on the market by us complies with the relevant harmonized rules of the EU.

Unauthorized modifications or unintended use of the product makes this declaration invalid

Hersteller BERTHOLD TECHNOLOGIES GmbH & Co. KG
Manufacturer Calmbacher Str. 22, D-75323 Bad Wildbad, Germany

Produktbezeichnung
Product name

SENSseries Detektoren
SENSseries Detectors

Typenbezeichnung / Modell
Type / model

LB480-xx-00-xx-xx-xxx-x

LB480-xx-Z0-xx-xx-xxx-x

Richtlinie / Verordnung directive / regulation		angewendete Normen applied standards
Niederspannungsrichtlinie low voltage directive	2014/35/EU	EN 61010-1:2010 + A1 :2019
EMV EMC	2014/30/EU	EN IEC 61326-1:2021 Namur NE 021:2017
RoHS	2011/65/EU	

Diese Erklärung wird in Verantwortung für den Hersteller ausgestellt durch This declaration is issued by the manufacturer released by

Bad Wildbad, 10.05.2024

Ort und Datum Place and date Tobias Stephan

Leiter F&E Head of R&D

Registergericht / Court of Registration Persönlich haftende Gesellschafterin / Fully liable Associates Registergericht / Court of Registration Geschäftsführung / Management USt.-1d-Nr. / VAT Reg. No. Deutsche Steuernummer / German Tax No. WEEE-Reg. No.

Stuttgart HRA 330991 Berthold Technologies Verwaltungs-GmbH Stuttgart HRB 331520 Thomas Bogner DE813050511 49038/08038 DE99468690

5.2 Allgemeine Hinweise

Dieses Sicherheitshandbuch stellt die Betriebsanleitung nach Richtlinie 2014/34/EU dar, sowie den in der Konformitätserklärung genannten Normen, National Electrical Code (NEC: ANSI/NFPA 70), Canadian Electrical Code (CEC) und den britischen Vorschriften, die sich aus dem UKCA-Zertifikat ergeben.

Nationale zuständige Behörden können weitere Forderungen stellen.

Zur Vermeidung von Personen- und Sachschäden und zum sicheren Betrieb beachten Sie unbedingt dieses Sicherheitshandbuch.

In allen Fällen, in denen dieses Symbol angebracht ist, muss das Handbuch herangezogen werden, um die Art der potenziellen Gefahren und die zu ihrer Vermeidung zu ergreifenden Maßnahmen zu ermitteln.

Für die Detektoren der LB 480-Serie stehen weitere Dokumente zur Verfügung, welche nicht in diesem Sicherheitshandbuch enthalten sind, die sie auch im Download-Bereich auf der Homepage von Berthold (www.berthold.com) finden können.

5.3 Sachwidrige Verwendung

Warnung vor Fehlgebrauch

Bestimmungswidrig und zu verhindern ist:

- Die Verwendung unter anderen als den durch den Hersteller in seinen technischen Unterlagen, Datenblättern, Betriebs- und Montageanleitungen und in anderen spezifischen Vorgaben genannten Bedingungen und Voraussetzungen.
- Die Instandsetzung von Detektoren, die im Ex-Bereich eingesetzt werden, durch Personen, die nicht von BERTHOLD TECHNOLOGIES autorisiert sind.
- Die Verwendung in beschädigtem oder korrodiertem Zustand.
- Der Betrieb mit geöffnetem oder mit unzureichend verschlossenem Deckel.
- Der Betrieb mit
 - unzureichend verschlossenen Einführungen,
 - unzureichend festgezogenen bzw. beschädigten Verschraubungen, d.h.
 Kabelverschraubungen, Adapter oder Verschlussstopfen.
- Der Betrieb ohne die vom Hersteller vorgesehenen Sicherheitsvorkehrungen.
- Bestehende Sicherheitseinrichtungen zu manipulieren oder zu umgehen.

5.4 Sicherheitshinweise

5.4.1 Sicherheitshinweise für Montage- und Bedienungspersonal

Montage, Installation, Inbetriebnahme, Betrieb und Wartung dürfen ausschließlich von dazu befugtem und entsprechend geschultem Personal durchgeführt werden.

Vor Montage/Inbetriebnahme:

- Sicherheitshandbuch lesen
- Betriebsanleitung und Technische Information lesen
- Montage- und Betriebspersonal ausreichend schulen
- Sicherstellen dass der Inhalt des Sicherheitshandbuches und der Betriebsanleitung vom zuständigen Personal voll verstanden wird.

Bei Unklarheiten:

- Mit Hersteller Kontakt aufnehmen.
- Reparatur

Reparatur

Ersatzteile dürfen ausschließlich vom Service der Fa. BERTHOLD TECHNOLOGIES montiert werden oder von Personen, die von BERTHOLD TECHNOLOGIES dazu autorisiert wurden. Falls dies nicht möglich ist, müssen Sie den kompletten Detektor tauschen oder zur Reparatur ins Herstellerwerk schicken.

Series LB 480

5.5 Einsatzbereich und technische Daten

Detektoren, die nach Verlassen des Werks in Bad Wildbad angepasst wurden, tragen entweder ein zusätzliches Typenschild das einzelne Zeichen des Detektortyps (LB 480-xx-xx-xx-xx-xx) ersetzt oder haben auf dem Typenschild im Feld "customized" (soweit vorhanden) eine Markierung. Die LB-Nr. ändert sich dementsprechend!

5.5.1 Ex-Schutz und Temperaturgrenzen

Prüfbescheinigungen: PTB 11 ATEX 1032 X

IECEX PTB 12.0038X EMA21UKEX0050X CSA 70009819

FM16US0282X / FM16CA0144X

Schutzart: IP66 / IP68 nach IEC 60529

IP69K nach ISO 20653

NEMA Type 4X

Luftdruck: 80 kPa (0,8 bar) bis 110 kPa (1,1 bar)

Sauerstoffgehalt der Luft, üblicherweise: 21 % (Vi/V)

5.5.2 Detektor-Versionen und Einsatzbereich für Zonen nach ATEX/IECEx/NEC/CEC

Cı	LB 480-1x-xx CrystelSENS (Punktdetektor) LB 480-2x-xx UniSENS (Stabdetektor)		LB 480-3x-xx SuperSENS LB 480-4x-xx TowerSENS		
		LB 480-xx-3C LB 480-xx-4C	LB 480-xx-1x LB 480-xx-2x	LB 480-xx-3C LB 480-xx-4C	
nicht eig	ensicher	eigensicher	nicht eigensicher	eigensicher	
		Ex-t			
		Ex-d			
Ex	-e	Ex-e ¹⁾ /Ex-i	Ex-e	Ex-e ¹⁾ /Ex-i	
<i>T₀</i> ≥ -40 °C					
<i>T</i> _a ≤ +80 °C	<i>T</i> _a ≤ +65 °C	<i>T</i> _a ≤ +50 °C	<i>T</i> _a ≤ +60 °C ²⁾	<i>T</i> _a ≤ +50 °C	
			Gas		
T5	Т6	T6	T6	Т6	
Ex db eb IIC Gb		Ex db eb [ia Ga] IIC Gb	Ex db eb IIC Gb	Ex db eb [ia Ga] IIC Gb	
AEx db e	b IIC Gb	AEx db eb [ia Ga] IIC Gb	AEx db eb IIC Gb	AEx db eb [ia Ga] IIC Gb	
			Staub		
T95 °C	T80 °C	T80 °C	T80 °C	T80 °C	
Ex tb IIIC Db		Ex tb [ia Da] IIIC Db	Ex tb IIIC Db	Ex tb [ia Da] IIIC Db	
AEx tb	IIIC Db	AEx tb [ia Da] IIIC Db	AEx tb IIIC Db	AEx tb [ia Da] IIIC Db	
Ex-d/ -e/ -t		Ex-d/ -e/ -i/ -t	Ex-d/ -e/ -t	Ex-d/ -e/ -i/ -t	
	LB 480 LB 480 nicht eig: Ex To ≤ +80 °C T5 Ex db et AEx db e T95 °C Ex tb I AEx tb	CrystelSENS (Pu LB 480-2x UniSENS (State LB 480-xx-1x LB 480-xx-2x nicht eigensicher Ex-e $T_o \le +80 ^{\circ}\text{C} \qquad T_o \le +65 ^{\circ}\text{C}$ T5 T6 Ex db eb IIC Gb AEx db eb IIC Gb T95 $^{\circ}\text{C}$ T80 $^{\circ}\text{C}$ Ex tb IIIC Db AEx tb IIIC Db	CrystelSENS (Punktdetektor) LB 480-2x-xx UniSENS (Stabdetektor) LB 480-xx-1x LB 480-xx-2x LB 480-xx-4C nicht eigensicher Ex-t Ex-d Ex-e Ex-e Ex-e To $\leq +80 ^{\circ}$ C To $\leq +65 ^{\circ}$ C To $\leq +50 ^{\circ}$ C Ex db eb IIC Gb AEx db eb IIC Gb AEx db eb [ia Ga] IIC Gb To $\leq +50 ^{\circ}$ C Ex tb IIIC Db AEx tb IIIC Db	CrystelSENS (Punktdetektor) Sup LB 480-2x-xx LB 480 UniSENS (Stabdetektor) LB 480-xx-3C LB 480-xx-1x LB 480-xx-2x LB 480-xx-4C LB 480-xx-2x LB 480-xx-2x LB 480-xx-2x LB 480-xx-2x nicht eigensicher eigensicher nicht eigensicher Ex-d Ex-d Ex-d Ex-e Ex-e³¹/Ex-i Ex-e Gas To ≤ +60 °C²¹ Gas T5 T6 T6 T6 Ex db eb IIC Gb Ex db eb [ia Ga] IIC Gb Ex db eb IIC Gb AEx db eb IIC Gb AEx db eb [ia Ga] IIC Gb AEx db eb IIC Gb Staub T95 °C T80 °C T80 °C Ex tb IIIC Db Ex tb [ia Da] IIIC Db Ex tb IIIC Db AEx tb IIIC Db AEx tb IIIC Db AEx tb IIIC Db	

¹⁾ interne IP30 Schutzabdeckung teschild)

²⁾ einige Detektoren unterstützen $T_a \le +65$ °C (siehe Gerä-

5.5.3 Detektor-Versionen und Einsatzbereich für Divisions nach NEC/CEC

Bauform		LB 480-1x-xx CrystelSENS (Punktdetektor) LB 480-2x-xx CrystelSENS (Stabdetektor) LB 480-3x-xx SuperSENS LB 480-4x-xx PowerSENS		
Schutzkonzept		LB 480-xx-Fx LB 480-xx-Gx		
Signalstromkreis		nicht eigensicher		
Schutzprinzip				
Elektronikraum		explosion Proof (XP)		
Anschlussraum		explosion Proof (XP)		
Umgebungstemperaturen				
min.		T _a ≥ -40 °c		
max.		<i>Ta</i> ≤ +80 °c	<i>T</i> _a ≤ +60 °C	
Temperaturklasse		T5	T6	
	Class I Division 1 US, NEC 500, 501	Gas Group A, B, C, D		
FINAL	Class I Division 1 C (Canada) CEC 18	Gas Group B, C, D		
	Class II Division 1 US, NEC 500, 502 C (Canada) CEC 18	Staub Group E, F, G		
	Class III Division 1 US, NEC 500, 503 C (Canada) CEC 18	Fasern / Flusen		

5.6 Elektrische Kenngrößen für Versorgung und RS485

	LB 480-xx-xx-x1 ³⁾	LB 480-xx-xx-x2	
Versorgung (Klemme 1,2 bzw. 3,4)	$U = 18 \dots 32 \text{ V}_{DC}$, 12W $U_m = 250 \text{ V}$	$U = 100 \dots 240 \text{ V}_{AC}, 50/60 \text{ Hz}, 12 \text{ VA}$ $U_m = 250 \text{ V}$	
RS485 Stromkreis ²⁾ (Klemmen 5/5A, 6/6B)	$U_m = 5 \text{ V}_{DC}$ $I_m = 20 \text{ mA}$		

- 2) nur zum Anschluss an RS485 Schnittstellen vom Typ LB 480
- 3) für NEC- und CEC-Installationen siehe CSA Zertifikat (Conditions of Acceptability)

Bitte beachten Sie, dass bei Ausfall einer eventuell angeschlossenen Wasserkühlung, die maximal zulässige Umgebungstemperatur an der Detektoroberfläche nicht überschritten werden darf.

Ab welcher Umgebungstemperatur eine Wasserkühlung erforderlich ist, damit die Elektronik nicht durch Übertemperatur beschädigt wird, entnehmen sie bitte den technischen Daten der Betriebsanleitung.

Die max. Umgebungstemperatur verringert sich, wenn der Detektor nicht freistehend montiert ist, dabei darf die maximale Oberflächentemperatur keinesfalls überschritten werden.

5.7 Elektr. Sicherheitskennwerte des zugehörigen Betriebsmittels

Signalstromkreise	LB 4803C (Sink)	LB 4804C (Source)			
Stromausgang (potentialfrei) HART® / 4 20 mA (Klemme 17, 18 bzw. 19, 20) lineare Kennlinie					
max. Ausgangsspannung		$U_a = 2$	25,2 V		
max. Ausgangsstrom		$I_a = 101 \text{ mA}$			
max. Ausgangsleistung		<i>P</i> _a = 635 mW			
max. Eingangsspannung	<i>U_i</i> = 30 V				
max. Eingangsstrom	<i>I_i</i> = 152 mA				
max. Eingangsleistung	P _i = 1,14 W				
max. innere Induktivität	$L_i =$	<i>L_i</i> = 20 μH			
max. innere Kapazität	$C_i = 3 \text{ nF}$				
Einzelreaktanzen nach		IIC	IIB		
EN 60079-11,Tab. A2,		$L_o = 17 \text{ mH}$	$L_o = 4 \text{ mH}$		
Bild A4 / A6		$C_o = 0.82 \ \mu F$	$C_o = 0,107 \ \mu F$		
Signalausgang (potentialfrei) (Klemme 11, 12)	Open-Collektor Stromkreis lineare Kennlinie				
max. Eingangsspannung	$U_i = 15 \text{ V}^{1)}$				
max. Eingangsstrom ²⁾	$I_i = 26,6 \text{ mA}$				
max. Eingangsleistung	$P_i = 100 \text{ mW}$				
max. innere Induktivität	vernachlässigbar klein				
max. innere Kapazität	C _i = 11 nF				
Signalausgang (Klemme 15, 16)	Thermometerstromkreise (Pt100) lineare Kennlinie				
max. Ausgangsspannung	<i>U</i> _o = 14 V				
max. Ausgangsstrom	I₀ = 27,7 mA				
max. Ausgangsleistung	P _o = 97 mW				
max. innere Induktivität	vernachlässigbar klein				
max. innere Kapazität	C _i = 11 nF				
Werte gemeinsam wirkende	IIB				
Reaktanzen (<i>C_i</i> ist nicht berücksichtigt)	$L_{\rm o} = 0.1$ mH, $C_{\rm o} = 4.6~\mu F$				
racksterrage	$L_o = 0.5 \text{ mH}, C_o = 4.0 \mu\text{F}$				
	$L_o = 1.0 \text{ mH}, C_o = 3.3 \mu\text{F}$				
Höchstzulässige äußere	IIC				
Werte gemeinsam wirkende Reaktanzen (<i>C_i</i> ist nicht	$L_o = 0.1 \text{ mH}, C_o = 0.73 \mu\text{F}$				
berücksichtigt)	$L_o = 0.5 \text{ mH}, C_o = 0.71 \mu\text{F}$				
	$L_{o} = 1.0 \text{ mH}, C_{o} = 0.59 \mu\text{F}$				

¹⁾ mindestens 5V

²⁾ Leckstrom im gesperrten Zustand <0,01mA

In Gasatmosphären müssen, bei der Wahl der Gruppe IIB bzw. IIC für die eigensicheren Stromkreise, alle eigensicheren Stromkreise und der Detektor LB 480 vollständig in der gewählten Gruppe IIB bzw. IIC betrieben werden.

Der Detektor darf nicht in Zone 0 bzw. Zone 20 installiert werden. Das Schutzniveau "ia" erlaubt die sichere Verwendung von Messmitteln, die ansonsten lediglich in Zone 0 bzw. Zone 20 eingesetzt werden dürfen.

5.8 Installation

- Die Installations- und Sicherheitshinweise der Betriebsanleitung beachten.
- Gemäß Herstellerangaben und den gültigen, lokalen Normen und Regeln installieren, insbesondere bei Installationen, die nicht den ATEX/IECEx-Vorschriften entsprechen.
- Das Gerät nicht außerhalb der elektrischen, thermischen und mechanischen Kenngrößen betreiben.
- Zur Erhaltung der Gehäuseschutzart den Gehäusedeckel und die Verschraubungen (Kabelverschraubungen, Adapter bzw. Verschlussstopfen) fachgerecht montieren.
- Nicht verwendete Einführungen müssen mit metallischen Verschlussstopfen verschlossen sein.
- Beachten Sie auch die Betriebs- und Montageanleitung der Verschraubungen.
- Vor der Installation eigensicherer Stromkreise ist ein Nachweis der Eigensicherheit zu führen (siehe IEC 60079-14). Der Anschluss von Mess- und Prüfmitteln muss berücksichtigt werden! Die Installation muss anhand dieses Nachweises erfolgen.
- Das Betriebsmittel an den örtlichen Potentialausgleich anschließen.
- Bei geschirmten Kabeln ist die Schirmung detektorseitig aufzulegen. Auf eine ausreichende Isolation >500 V zwischen Schirm und Leitungen ist zu achten.
- Der Stromausgang und der Open-Collector Stromkreis sind jeweils potentialfrei ausgeführt und haben eine Spannungsfestigkeit von mindestens 500
 V_{eff}. Der Stromkreis des Widerstandsthermometers ist elektrisch mit dem PA
 Anschluss verbunden. Zur Versorgungsspannung besteht eine Spannungsfestigkeit von mindestens 1500 V_{eff}.
- Ein für die Umgebungsbedingungen und Anwendung geeignetes und erlaubtes Anschlusskabel verwenden. Örtliche Vorschriften beachten!
- Das Anschlusskabel (Leiter und Isolation) muss für eine Dauergebrauchstemperatur $\geq T_a$ +15 K geeignet sein.
- Angeschlossene Leitungen müssen zugentlastet und fest verlegt sein.
- Demontieren Sie nicht das Detektorgehäuse vom Detektorsockel (siehe Abb. 11).
- Die Detektoren ausschließlich für ortsfeste Montage verwenden.
- Detektoren mit einer Zulassung für den Explosionsschutz, die in einem "Nicht-Ex-Bereich" eingesetzt werden, können ihre Ex-Zulassung verlieren, falls Sorgfalt und Pflichten (Anweisungen dieses Sicherheitshandbuches bzgl. Installation, Inbetriebnahme, Wartung, etc.) mißachtet werden.
- Verwenden Sie eine Checkliste um die Richtigkeit und Vollständigkeit ihrer Arbeit zu dokumentieren. Wir empfehlen die Checklisten in Kapitel 5.15 und Kapitel5.16 zu verwenden.

5.8.1 Erhöhte Sicherheit "e" im Anschlussraum

Deckel

- Beim Öffnen und Schließen des Deckels das Gewicht (ca. 1,5 kg) beachten, u. a. damit er nicht herunterfällt.
- Alle vier Deckelschrauben (Zylinderschraube ISO 4762 M5 x 20 A4 70) mit Innensechskant müssen mit einem Drehmoment von 4 Nm befestigt werden. Bei Deckel mit einer Flachdichtung werden Federringe (Federring DIN 127 B5 1.4310) unterlegt. Bei Deckel mit O-Ring werden selbsthemmende Sicherungsscheiben (NL5 SS von NORDLOCK(R)) unterlegt.

Verschraubungen

- Nur metallische und für die Zündschutzart passende Verschraubungen M20 x 1,5 mit Schutzart entsprechend ihrer Anwendung verwenden, mindestens aber IP65.
- Für Umgebungstemperaturen zwischen -20 °C und +40 °C sind nur solche Verschraubungen zugelassen, die mindestens den auf dem Deckblatt der LB 480 EU-Baumusterprüfbescheinigung aufgeführten Normenstand technisch entsprechen. Außerhalb dieses Temperaturbereichs dürfen nur Verschraubungen verwendet werden, die von BERTHOLD TECHNOLOGIES freigegeben sind.
- Nur Kabel und Verschraubungen verwenden, die nach den örtlichen Installationsvorschriften zugelassen sind. Darin könnten spezielle Kabel zur Verhinderung von Gaswanderung und insbesondere vergossene Verschraubungen vorgeschrieben sein.
- Nur Verschraubungen verwenden die für die Kabelart (armiert, nicht armiert, ...) und den Kabelquerschnitt geeignet sind.
- Bei Verwendung von Adaptern zur Gewindeanpassung (z.B. Gewindereduzierung), darf in jeder Einführung nur ein Adapter verwendet werden.
- Die Verschraubungen nur durch solche gleichen Typs ersetzen.

Anschlussklemmen

- Zulässiger Leiterquerschnitt:
 - mit Aderendhülsen 0,5 1,5 mm² (AWG 21 16 flexibel)
 - ohne Aderendhülse 0,5 2,5 mm² (AWG 21 14 flexibel oder starr)
- Es sind sowohl Litzenleitungen als auch starre Adern zulässig.
- Zum Anklemmen von Litzenleitungen sind zulässig: Aderendhülsen oder Direkteinführung der Litze in die Klemme. Der Anschluss von feinstdrähtiger Litzenleitung der Klasse 6, nach IEC 60228, ist nur mit Aderendhülsen zulässig. Es sind Aderendhülsen nach DIN 46228 Teil1 + Teil 4 zugelassen. Empfohlene Länge der äußeren leitfähigen Teils der Aderendhülse bzw. die Abisolierlänge der Leitungen ist 10 mm.
- Werkzeuge zur Herstellung von gecrimpten Leitern müssen die Anforderungen an einen Auszugstest nach DIN 46228 Teil 4 gewährleisten. Diese sollten einer Auszugskraft von 30 N bei 0,5 mm² Querschnitt u. 50 N bei 2.5 mm² Querschnitt standhalten.
- Verlegen Sie die Anschlussleitungen im Anschlussraum so, dass...
 - Schmutz und Feuchtigkeit im Anschlussraum vermieden wird.
 - beim Abisolieren die Leiter nicht beschädigt werden.

- die Leiterisolation bzw. der Kragen der Aderendhülse bis in das Gehäuse des Klemmenkörpers hineinreicht.
- blanke leitfähige Teile der Leitungen (z.B. Drähtchen einer Litze) nicht aus Klemmenkörper herausstehen.
- Die Länge des äußeren leitfähigen Teils der Aderendhülse bzw. der abisolierten Ader muss 10 mm betragen, damit die Ader sicher in der Federzugklemme gehalten wird.
- sofern Aderendhülsen verwendet werden, die Leiterisolation bis in den Kragen der Aderendhülse hineinreicht.

5.8.2 Eigensichere Installation Ex "i"

Die Abschnitte "Verschraubungen" und "Anschlussklemmen" in 5.8.1 gelten für die eigensichere Installation in gleicher Weise.

- Der Gehäusedeckel (Metalldeckel) deckt den gesamten Anschlussraum ab (siehe Abb. 3).
- Beim Öffnen und Schließen des Deckels das Gewicht (ca. 1,5 kg) beachten, u. a. damit er nicht herunterfällt.
- Die Deckelschrauben (Zylinderschraube ISO 4762 M5 x 20 A4 70) mit Innensechskant werden mit selbsthemmenden Sicherungsscheiben (NL5 SS von NORDLOCK®) unterlegt und mit einem Drehmoment von 4 Nm angezogen.
- Dichtungen der Verschraubungen müssen so ausgelegt werden, dass die Trennung zwischen eigensicheren und nicht eigensicheren Anschlussraum nicht aufgehoben wird.
- Der halbkreisförmige Kunststoffdeckel (Ex-e Deckel) deckt die nicht-eigensicheren Anschlussklemmen ab (siehe Abb. 3).
- Die Ex-e Deckel muss mit dem IP30 Schutz den Zugriff auf nicht eigensichere Stromkreise verhindern.
- Nach der Installation muss der Ex-e Deckel den Anschlussraum für die Versorgungsspannung und RS485 Schnittstelle wieder komplett abdecken.
- Beide Schrauben (Flachkopfschraube ISO 7045 M3 x 8 4.8) zur Fixierung des Ex-e Deckels müssen montiert sein.
- Der Gehäusedeckel ist nur korrekt montiert, wenn der Stift am Ex-e Deckel leichtgängig in das Sackloch vom Gehäusedeckel einrastet.
- Bei eigensicheren Ausführungen darf
 - der Metalldeckel zum Anschlussraum nur für kurze Zeit zur Prüfung und Einstellung geöffnet werden.
 - der halbkreisförmige Deckel im Anschlussraum nicht unter Spannung bzw. nicht bei Anwesenheit von explosionsfähiger Atmosphäre geöffnet werden.
- Wird ein externer Stromkreise an den eigensicheren Stromkreis des Detektors ohne einen Nachweis der Eigensicherheit angeschlossen, kann nicht sichergestellt werden, daß die Schutzbeschaltungen des Detektors noch korrekt funktionieren und damit die Eigensicherheit noch gewährleistet ist.
- Zustände oder Ereignisse, die nicht entsprechend dem durchgeführten Nachweis der Eigensicherheit bzw. die nicht entsprechend den Anweisungen dieser Anleitung berücksichtigt sind, können dazu führen, daß die Eigensicherheit nicht mehr gewährleistet ist.
- Geräte mit eigensicheren Stromkreisen dürfen nicht mehr an eigensicheren Stromkreisen angeschlossen werden, wenn sie zuvor nicht eigensicher eingesetzt wurden.

5.8.3 Explosion Proof (XP)

Der Abschnitt "Anschlussklemmen" in Kapitel 5.8.1 gelten für die Installation XP in gleicher Weise.

- Die Gewinde (Einführungen mit 1/2" NPT und Gehäusedeckel) müssen vor Beschädigung geschützt werden.
- Die Gewinde (Einführungen mit 1/2" NPT und Gehäusedeckel) müssen zur Abdichtung gegen Feuchtigkeit und zur Vermeidung von Korrosion umlaufend mit Schmiermittel OKS 217 eingefettet werden. Die Abdichtung muss die Schutzart NEMA Type 4X gewährleisten.

Deckel

- Das Gewicht des Deckels (ca. 1,5 kg) muss beim Öffnen und Schließen beachten werden, u. a. damit er nicht herunterfällt.
- Der Gehäusedeckel muss vollständig (> 10 Umdrehungen) eingeschraubt werden, bis der O-Ring am Ende des Gewindes im Eingriff ist und die O-Ring Nut überdeckt ist. Mit einem Drehmoment von 25 Nm festdrehen.

Verschraubungen

- Nur metallische Verschraubungen mit 1/2" NPT Gewinde verwenden.
- Nur Verschraubungen verwenden, die für ihre Anwendung und entsprechend den lokal geltenden gesetzlichen Bestimmungen erlaubt sind.
- Bei einer Installation mit Conduits, müssen unmittelbar an den Einführungen ins Gehäuse, Zündsperren installiert werden.

5.9 Inbetriebnahme

- Der verwendete HART®-Kommunikator muss für den Betrieb innerhalb der jeweiligen Ex-Zone geeignet sein.
- Bei eigensicherem Stromausgang muss auch der HART®-Kommunikator eigensicher sein. Das Schutzniveau (ia, ib, ic) des Kommunikators muss mindestens dem Schutzniveau des installierten Stromkreises entsprechen.

5.10 Schutzprinzip Ex-d/-e/-t und XP

- Anschlussraum nicht unter Spannung öffnen.
- Wenn explosionsfähige Atmosphäre vorliegt:
 - Wartezeit vor Öffnen des Elektronikraumes nach Abschalten der
 - Versorgung: 2 Minuten.
- Der weitere Betrieb ist nicht mehr zulässig, wenn:
 - der Detektor beschädigt ist
 - Gewinde am Gehäuse korrodiert sind
 - das Gehäuse des Detektors stark korrodiert ist
 - Verschlussstopfen stark korrodiert oder beschädigt sind
 - Kabelverschraubungen korrodiert oder beschädigt sind
 - Adapter stark korrodiert oder beschädigt sind
 - Dichtungen beschädigt sind, eine sichtbare Alterung oder Setzung aufweisen

5.11 Schutzprinzip Ex-d/-e/-i/-t (eigensicherer Stromausgang)

Beim Öffnen des Anschlussraumes im Betrieb sind zusätzlich folgende Hinweise zu beachten:

- Zu Reparatur- und Wartungszwecken darf der Gehäusedeckel kurzzeitig geöffnet werden.
- Der halbkreisförmige Deckel (Ex-Deckel) muss geschlossen bleiben, solange die Versorgungsspannung anliegt.
- Soll der nicht eigensichere Teil des Anschlussraums geöffnet werden, dann ist nach Kapitel 5.2.4 zu verfahren.
- Wartezeit vor Öffnen des Ex-e Deckels nach Abschalten der Versorgung: 2 Minuten.

5.12 Control Drawing

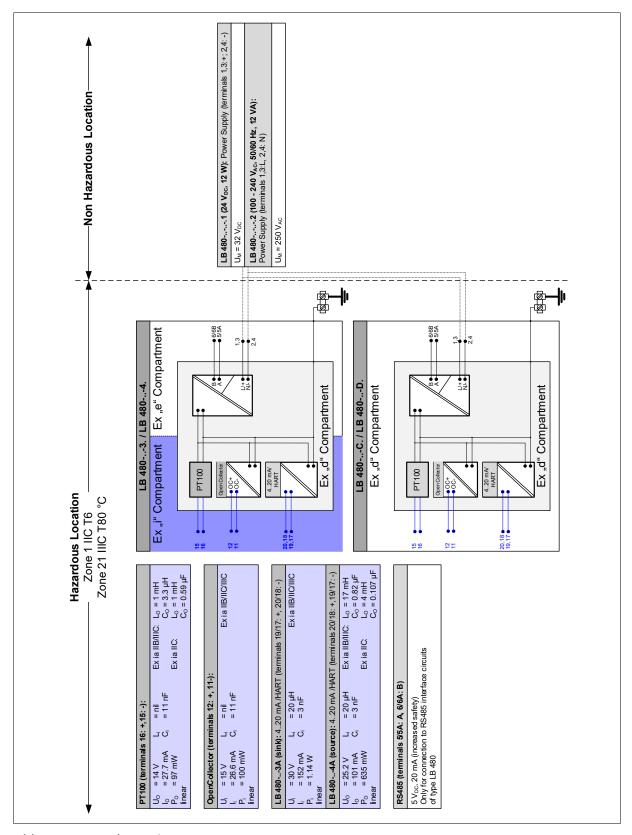


Abb. 1 Control Drawing

5.13 Ex – Konzept

5.13.1 **Ex-e** – **Konzept**

LB 480-xx-1C LB 480-xx-2C

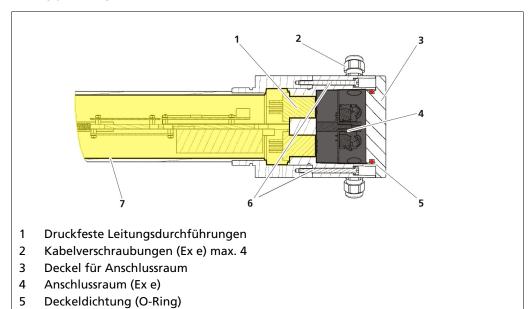


Abb. 2 Ex-e - Konzept LB 480-xx-1C, LB 480-xx-2C

6 Schrauben (dürfen nicht gelöst werden!)

Druckfeste Kapselung (Ex d)

5.13.2 Ex-i – Konzept

Die RS485-Verbindung zu eventuell angeschlossenen Typ LB 480 Schnittstellen wird in erhöhter Sicherheit ausgeführt.

LB 480-xx-3C LB 480-xx-4C

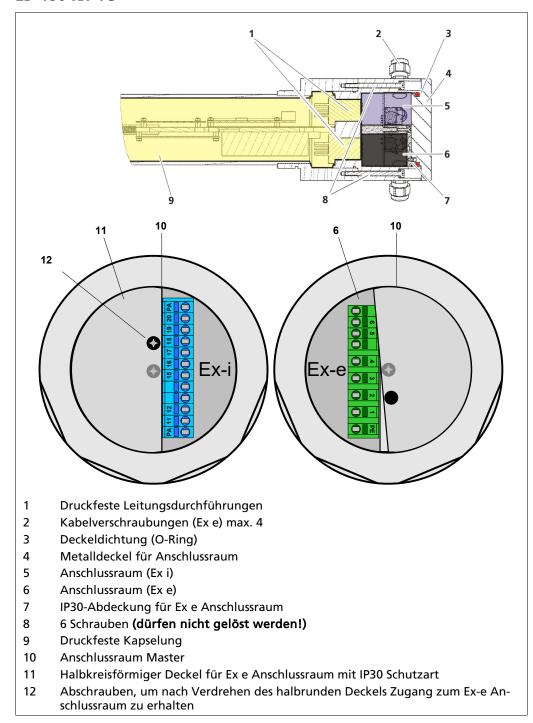
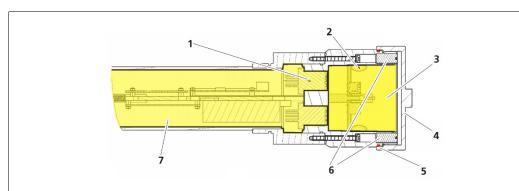



Abb. 3 Ex-i - Konzept LB 480-xx-3C, LB 480-xx-4C

5.13.3 **XP - Konzept**

LB 480-xx-FX LB 480-xx-GX

- 1 Leitungsdurchführungen (explosion proof)
- 2 4x ½" NPT Leitungseinführung
- 3 Anschlussraum (explosion proof)
- 4 Deckel für Anschlussraum
- 5 Deckeldichtung (O-Ring)
- 6 Gewindestifte (dürfen nicht gelöst werden!)
- 7 Gehäuse (explosion proof)

Abb. 4 XP - Konzept LB 480-xx-FX, LB 480-xx-GX

5.13.4 Installationsplan für Zündschutzart Erhöhte Sicherheit "e" und Eigensicherheit "i"

Typen

LB 480-..-1

LB 480-..-2

LB 480-..-3

LB 480-..-4

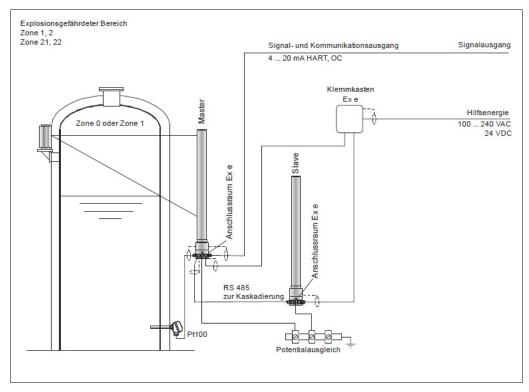


Abb. 5 Installationsplan Zündschutzart

5.13.5 Anschlussklemmen

Anschlussraum Master Ex-e und XP

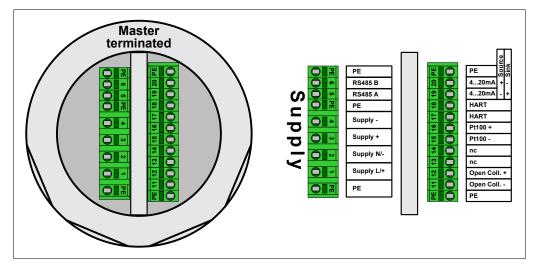


Abb. 6 Anschlussraum Master Ex-e und XP (RS485 terminiert)

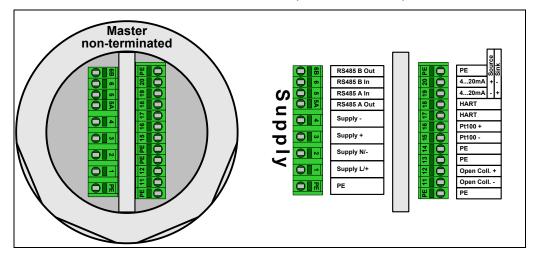


Abb. 7 Anschlussraum Master Ex-e und XP (RS485 nicht terminiert)

Netzversorgung

	Klemme	Beschriftung	
Typ DC-Versorgung	1	Supply +	$U_e = 24 V_{DC}$
LB 480 11	2	Supply -	max. 12 W
	3	Supply +	zur Weiterleitung
	4	Supply -	an den nächsten Slave
Typ AC-Versorgung	1	Supply L	U _e = 100 240 V _{AC} ,
LB 480 12	2	Supply N	50/60 Hz, max. 12 V _{AC}
	3	Supply +	Nicht zur Weiterlei-
	4	Supply -	tung Verwenden!

Keine Leitungen an die Anschlüsse "n.c." anklemmen, da diese mit der Gehäusemasse verbunden sind.

Digitale Schnittstelle RS485

Terminal	
5/6	für Multi-Detektor Betrieb, Verbindung der Slave-Detektoren oder nicht terminierter Master-Detektoren, Service Interface und für Softwareupdate
5A/6B	RS485 Verbindung mit weiteren Detektoren: nur bei nicht terminierten Master-Detektoren verfügbar

Anschlussraum Master Ex-e / Ex-i (nach Entfernung des halbrunden Deckels)

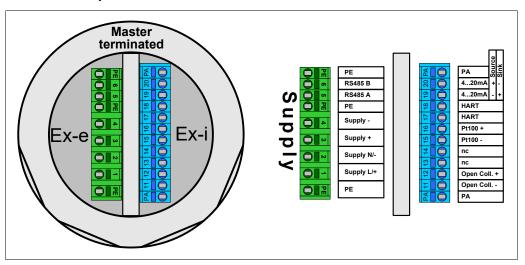


Abb. 8 Anschlussraum Master Ex-e / Ex-i (RS485 terminiert)

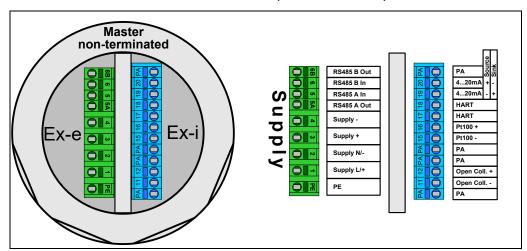


Abb. 9 Anschlussraum Master Ex-e / Ex-i (RS485 nicht terminiert)

Netzversorgung

	Klemme	Beschriftung	
	1	Supply +	$U_e = 24 V_{DC}$
Typ DC-Versorgung	2	Supply -	max. 12 W
LB 480 11	3	Supply +	zur Weiterleitung der Versor-
	4	Supply -	gung an den nächsten Slave
Typ AC-Versorgung LB 480 12	1	Supply L	U _e = 100 240 V _{AC} ,
	2	Supply N	50/60 Hz, max. 12 V _{AC}
	3	Supply +	Nicht zum Weiterleiten
	4	Supply -	Verwenden!

Keine Leitungen an die Anschlüsse "n.c." anklemmen, da diese mit der Gehäusemasse verbunden sind.

Digitale Schnittstelle RS485

Terminal	
5/6	für Multi-Detektor Betrieb, Verbindung der Slave-Detektoren oder nicht terminierter Master-Detektoren, Service Interface und für Softwareupdate
5A/6B	RS485 Verbindung mit weiteren Detektoren: nur bei nicht terminierten Master-Detektoren verfügbar

Der OC (Open Collector) als auch der Stromausgang dürfen nur an einen eigensicheren Speisetrenner angeschlossen werden. Ansonsten sind alle Stromkreise nicht mehr eigensicher! Als Pt100 darf nur ein passives Bauteil angeschlossen werden.

Anschlussraum Slave

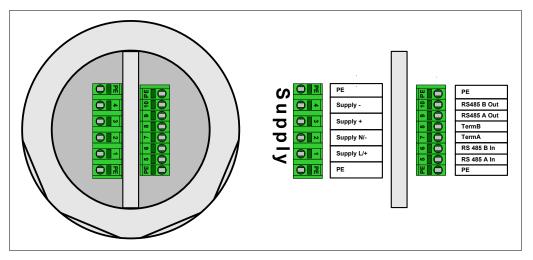


Abb. 10 Anschlussraum Slave

Netzversorgung

	Klemme	Beschriftung	
	1	Supply +	$U_e = 24 V_{DC}$
Typ DC-Versorgung	2	Supply -	max. 12 W
LB 480 01	3	Supply +	zur Weiterleitung der Versor-
	4	Supply -	gung an den nächsten Slave
Typ AC-Versorgung LB 480 02	1	Supply L	U _e = 100 240 V _{AC} ,
	2	Supply N	50/60 Hz, max. 12 VA $U_m = 253 V_{AC}$
	3	Supply + Nicht zum Durchschle	
	4	Supply -	der Versorgung verwenden

Digitale Schnittstelle RS485

Klemme	Beschriftung
5	RS485 A In
6	RS485 B In
9	RS485 A Out
10	RS485 B Out

Montageanleitung Kabelverschraubung und Verschlussstopfen

Die Kabelverschraubungen dienen nur zur Einführung von fest verlegten Leitungen.

Beachten Sie die Drehmomente, Querschnitte und Schutzarten der Verschraubungen in der folgenden Tabelle.

Die angegebenen Drehmomente in der Tabelle sind Richtwerte für die in der Tabelle aufgeführten Verschraubungen, die aber im wesentlichen vom verwendeten Kabel abhängen. Die Druckschraube muss so angezogen werden, dass der IP-Schutz dauerhaft gewährleistet ist.

Kabelverschraubungen

۵	erial	EX-Kennzeichnung/ Kabelquerschnitt für		CIAVA	Drehmoment / Dichtungsmaterial		
qyT	Material	IQ-Nr.	Schutzart	die Dichtringe	SW*	Druck- schraube	Verschrau- bungskörper
	Messing vernickelt	55412	PTB 11 ATEX 1007 X IP66 / IP68 / IP69K	6 - 9 mm 9 - 14 mm	24 mm		0 Nm ilikon
Standard	Messing v	59030	IMQ 13 ATEX 018 X IP66 / IP68 IMQ 13 ATEX 038 X IP66 / IP68	4 - 6 mm 6 - 9 mm 9 - 12 mm	22 mm	16 Nm Silikon	6 Nm Neopren
Sta	lue	56086	PTB 11 ATEX 1007 X IP66 / IP68 / IP69K	7/1 mm		0 Nm ilikon	
	Edelstahl	59033	IMQ 13 ATEX 018 X IP66 / IP68 IMQ 13 ATEX 038 X IP66 / IP68	4 - 6 mm 6 - 9 mm 9 - 12 mm	22 mm	16 Nm Silikon	6 Nm Neopren
EMV	kelt	56091	PTB 11 ATEX 1007 X IP66 / IP 68 / IP69K	9 - 14 mm (7 - 12 mm Schirm)	24 mm		0 Nm ilikon
ert	Messing vernickelt	56088	PTB 11 ATEX 1007 X	9 - 14 mm (9 - 13 mm innen)	24 mm	10 Nm Silikon	
armi	armiert	56103	IP66 / IP 68 / IP69K	12 - 20 mm (10 - 15 mm innen)	30 mm		0 Nm ilikon

^{*)} SW = Schlüsselweite

Verschlussstücke M20 x 1,5

Material	ld-Nr.	Ex-Kennzeichnung / Schutzart SW		Drehmoment
Messing	56093	PTB 09 ATEX 1002 X IP66 / IP68 / IP69K	22 mm	10 Nm Silikon
vernickelt	59031	SIRA 10 ATEX 1224 XITS 16 ATEX 101335 X IP66 / IP68 / IP69K	24 mm	6 Nm Neopren
	56094	PTB 09 ATEX 1002 X IP66 / IP68 / IP69K	22 mm	10 Nm Silikon
Edelstahl	59032	SIRA 10 ATEX 1224 XITS 16 ATEX 101335 X IP66 / IP68 / IP69K	24 mm	6 Nm Neopren
	68464	PTB 11 ATEX 1032 X IP66 / IP68	24 mm	10 Nm Silicone

Verschlussstücke 1/2" NPT

Material	ld-Nr.	Ex-Kennzeichnung / Schutzart	SW	Drehmoment
Messing vernickelt	33910	CSA: LR11716 UL: 10514	10 mm	30 Nm
Edelstahl 316L	66050	CSA: 2310046 IP66, NEMA 4X	10 mm	30 Nm

5.14 Wartung und Sichtprüfung

Bei Detektoren, die im Ex-Bereich eingesetzt werden, darf das Detektorgehäuse (Abb. 11) und damit die druckfeste Kapselung der Elektronik ausschließlich vom Service der Fa. BERTHOLD TECHNOLOGIES geöffnet werden oder von Personen, die von BBERTHOLD TECHNOLOGIES dazu autorisiert wurden.

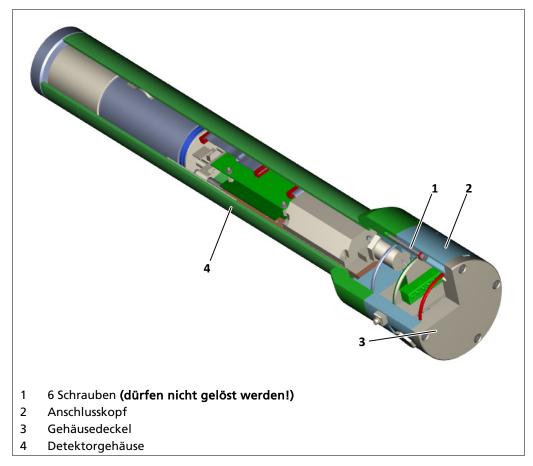


Abb. 11 Detektorgehäuse mit Anschlusskopf, mit M20 Kabeleinführungen für Zonen Klassifizierung

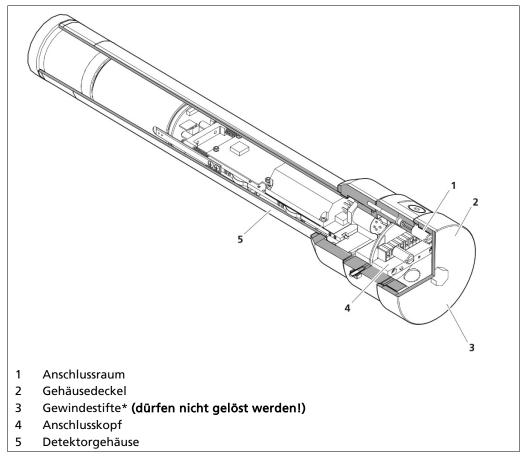


Abb. 12 Detektorgehäuse mit Anschlusskopf für Class/Divisions, mit 1/2" NPT Kabeleinführungen

*) Die Gewindestifte, die nach Abnehmen des Deckels sichtbar werden, dürfen nicht gelöst werden. Wenn eine oder mehrere der 6 Gewindestifte fehlen, darf der Detektor nicht mehr im Ex-Bereich betrieben werden.

Verwenden Sie bei einer Inbetriebnahme, Wartung oder Reparatur eine Checkliste um die Richtigkeit und Vollständigkeit ihrer Arbeit zu dokumentieren. Wir empfehlen die Checklisten in Kapitel 5.15 und Kapitel 5.16 zu verwenden.

Sichtprüfung

Führen Sie regelmäßig eine Sichtprüfung am Messsystem SENSseries durch, mindestens aber alle drei Jahre. Wir empfehlen hierzu die Checkliste aus Kapitel 5.15 zu verwenden. Leiten Sie sofort entsprechende Maßnahmen ein, sofern Sie Mängel bei der Sichtprüfung feststellen; trennen Sie ggf. den Detektor sofort vom Netz.

Beziehen Sie bei der Bestimmung der Prüfintervalle für die Sichtprüfung folgende Bedingungen ein:

- Umgebungsbedingungen (Temperatur, Feuchtigkeit, aggressive Atmosphäre, Schock und Vibrationen)
- Betriebsbedingungen (Auslastungsgrad, Fehlbedienung)
- größere Veränderungen in der Gesamtanlage (z.B. Änderungen in der Zoneneinteilung)

Dichtungen

Wird der Deckel oder das Gehäuse geöffnet, sind die jeweiligen Dichtungen zu prüfen und ggf. zu ersetzen.

Reinigung

Beachten Sie, dass bei Reinigungsmaßnahmen die Kabelverschraubungen und die Typenschilder nicht beschädigt werden. Entfernen Sie grobe Ablagerungen mit einer Edelstahldrahtbürste. Nicht zulässig ist Schleifen, Feilen oder das Abklopfen von Ablagerungen mit dem Hammer.

5.15 Plan für Sichtprüfung am Detektor

Wenn Sie eine der folgenden Fragen mit "Nein" beantworten, müssen Sie in der letzten Spalte die Maßnahmen festhalten, die Sie getroffen haben, um diesen Mangel abzustellen. Vergewissern Sie sich von der Richtigkeit der Maßnahmen bei Ihrem Ex-Schutz-Beauftragten, bevor Sie den Detektor wieder in Betrieb nehmen.

Prüfungen	JA	NEIN	Maßnahme
Allgemeine Prüfung			
Ist das Gehäuse frei von Korrosion, Beulen, Rissen, Löchern und Verzug?			
Ist der Gehäusedeckel des Detektors fest montiert?			
Werden die zulässigen funktionalen und sicherheitstechnischen Temperaturen eingehalten?			
Sind die äußeren Anschlüsse des Potenzialausgleichs intakt?			
Ist die Oberfläche des Detektors frei von Berührung mit anderen, unlegierten Stahlteilen?			
Sind die angeschlossenen Kabel zug- entlastet montiert?			
Ist eine Trennvorrichtung vorhanden?			
Ist die Trennvorrichtung für das Wartungspersonal leicht zugänglich?			
Prüfung der Verschraubungen (Kabelver	schraub	ungen,	Adapter, Verschlussstopfen)
Wurden ausschließlich metallische Verschraubungen verwendet?			
Sind die Verschraubungen für die Umgebungsbedingungen geeignet?			
Sind für den normalen Umgebungstem- peraturbereich zwischen -20 °C und +40 °C Verschraubungen eingesetzt, die mindestens den auf dem Deckblatt der EG-Baumusterprüfbescheinigung ange- gebenen Normen technisch entsprechen bzw. Sind Verschraubun- gen eingesetzt, die von BERTHOLD TECHNOLOGIES für die Verwendung an der LB 480 freigegeben sind?			
Ist der zulässige Temperaturbereich der Verschraubungen für die auftretenden Temperaturen geeignet?			
Sind die Verschraubungen für die ge- forderte Schutzart (mind. IP65) geeignet?			

Sind die Verschraubungen korrosionsfrei?			
Wird nicht mehr als ein Adapter (Reduzier-, bzw. Erweiterungsstück) verwendet?			
Ist die Gesamtlänge der Kabelver- schraubung plus eventuell verwendeter Adapter geringer als 10 cm?			
Sind die Kabeldurchmesser der verwen- deten Kabel für die Kabelverschraubungen zulässig?			
Sind die angeschlossenen Kabel für die Umgebungsbedingungen geeignet?			
Sind die angeschlossenen Kabel für eine Temperatur geeignet, die 15 °C über der maximalen Umgebungstem- peratur liegt?			
Sind die Verschraubungen unbes- chädigt?			
Sind Zweifel an den Abdichtungen der Verschraubungen ausgeschlossen?			
Sind die Kabel in den Kabelverschraubungen fest verklemmt?			
Sind die Verschraubungen fest angezogen?			
Sind alle nicht benutzten Öffnungen mit Verschlussstopfen versehen?			
Sind die Verschraubungen für die ge- forderte Explosionsgruppe geeignet?			
Betrifft nur Detektoren mit Zündschutza	rt XP (E	xplosion	n Proof)
Ist der Gehäusedeckel vollständig ein- geschraubt und ist der O-Ring vollständig im Eingriff?			
Sind die Zündsperren an den Einfüh- rungen des Gehäuses vorhanden und im ordnungsgemäßen Zustand?			
Datum: Name:			

5.16 Plan für die Kontrolle des Anschlussraums

Wenn Sie eine der folgenden Fragen mit "Nein" beantworten, müssen Sie in der letzten Spalte die Maßnahmen festhalten, die Sie getroffen haben, um diesen Mangel abzustellen. Vergewissern Sie sich von der Richtigkeit der Maßnahmen bei Ihrem Ex-Schutz-Beauftragten, bevor Sie den Detektor wieder in Betrieb nehmen.

Prüfungen	JA	NEIN	Maßnahme
Prüfungen im Anschlussraum			
lst der Innenraum (Anschlussraum) im einwandfreien Zustand?			
lst der Innenraum trocken, sauber und frei von Fremdkörpern?			
Sitzen die untergeklemmten Leitungen fest?			
Sind die Klemmen in einwandfreiem Zustand?			
Ist der Innenraum frei von Korrosion?			
Ist die Isolation frei von Schäden oder Kriechspuren?			
lst die mechanische Befestigung der Einbauten intakt?			
lst der Detektor vorschriftsmäßig nach den örtlichen Errichterbestimmung (z. B. EN 60079-14) installiert?			
Reicht die Kabelisolierung bis in den Anschlussraum hinein?			
Reicht die Aderisolierung in den Kragen der Klemme bzw. Aderendhülse hinein?			
Bei Verwendung von Andernendhülsen: Reicht der Kragen der Aderisolierung bis an die unterste Stelle des Kragens der Klemme?			
Sind alle Drähte einer feindrähtigen Litze von der Klemme erfasst und un- tergeklemmt?			
lst der Schutzleiter ordnungsgemäß montiert?			
Ist die Schirmleitung bis zur Klemme ordnungsgemäß elektrisch isoliert (z. B. mit Schrumpfschlauch)?			
Betrifft nur Detektoren mit eigensichere	r Install	ation (E	x-i)
Deckt der halbkreisförmige Deckel den Anschlussraum (Ex-e) ab?			

sen√series LB 480

Explosionsschutz

Sind die Schrauben für den halbkreis- förmigen Deckel festgezogen?			
Ist sichergestellt dass keine Drähte zwi- schen halbkreisförmigem Deckel und darunter liegenden Halterung einge- klemmt sind?			
Sind beide Schrauben (Flachkopf- schraube ISO 7045 - M3 x 8 - 4.8) des halbkreisförmigen Deckels montiert?			
Kann bei der Montage des ehäusede- ckels der Stift des halbkreisförmigen Deckels leichtgängig einrasten?			
Betrifft nur Detektoren mit Zündschutza	rt XP (E	xplosion	n Proof)
Sind alle 6 Gewindestifte fest im Sockel verschraubt?			
lst das Gewinde des Deckels zur Ver- meidung von Korrosion umlaufend mit Schmiermittel OKS 217 eingefettet?			
Prüfung auf Dichtheit			
Sind die Dichtungen der Verschraubung in Ordnung?			
lst die Dichtung für den Deckel im Anschlussraum unbeschädigt und frei von Rissen und Setzung?			
Datum:			
Name:			

5.17 ATEX Zertifikat – PTB 11 ATEX 1032 X

EU-Baumusterprüfbescheinigung (1)

- (2)Geräte oder Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen - Richtlinie 2014/34/EU
- EU-Baumusterprüfbescheinigungsnummer (3)

PTB 11 ATEX 1032 X

Ausgabe: 4

(4)Produkt: Szintillations-Messgeräte Typ LB480

(5)Hersteller: Berthold Technologies GmbH & Co. KG

Anschrift: (6)

Calmbacher Straße 22, 75323 Bad Wildbad, Deutschland

- Die Bauart dieses Produkts sowie die verschiedenen zulässigen Ausführungen sind in der Anlage und den (.7)darin aufgeführten Unterlagen zu dieser Baumusterprüfbescheinigung festgelegt.
- Die Physikalisch-Technische Bundesanstalt, notifizierte Stelle Nr. 0102 gemäß Artikel 17 der Richtlinie 2014/34/EU des Europäischen Parlaments und des Rates vom 26. Februar 2014, bescheinigt, dass dieses Produkt die grundlegenden Sicherheits- und Gesundheitsanforderungen für die Konzeption und den Bau von Produkten zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen gemäß Anhang II der Richtlinie erfüllt.

Die Ergebnisse der Prüfung sind in dem vertraulichen Prüfbericht PTB Ex 23-23149 festgehalten.

- (9) Die grundlegenden Sicherheits- und Gesundheitsanforderungen werden erfüllt durch Übereinstimmung mit EN IEC 60079-0:2018 EN 60079-1:2014+AC:2018 EN IEC 60079-7:2015+A1:2018 EN 60079-11:2012 EN 60079-31:2014
- (10) Falls das Zeichen "X" hinter der Bescheinigungsnummer steht, wird auf besondere Bedingungen für die sichere Anwendung des Produkts in der Anlage zu dieser Bescheinigung hingewiesen.
- (11) Diese EU-Baumusterprüfbescheinigung bezieht sich nur auf Konzeption und Prüfung des festgelegten Produkts gemäß Richtlinie 2014/34/EU. Weitere Anforderungen dieser Richtlinie gelten für die Herstellung und das Bereitstellen auf dem Markt. Diese Anforderungen werden nicht durch diese Bescheinigung
- (12) Die Kennzeichnung des Produkts muss die folgenden Angaben enthalten:

II 2 G Ex db IIC T6 Gb bzw.

II 2 G Ex db eb IIC T5 G bzw. II 2 G Ex db eb IIC T6 Gb

II 2 G Ex db [ia Ga] IIC T6 G bzw. II 2 G Ex db eb [ia Ga] IIC T6 Gb

II 2 D Ex tb IIIC T95 °C Db bzw. II 2 D Ex tb IIIC T80°C Db bzw.

II 2 G Ex tb IIIC T60°C Db

II 2 D Ex tb [ia Da] IIIC T80 °C Db bzw. II 2 D Ex tb [ia Da] IIIC T60 °C Db sionsschutz

Konformitätsbewertungss Im Auftrag

Braunschweig, 19. Januar 2024

Dr.-Ing. M. Thedens Direktor und Professor

Seite 1/8

EU-Baumusterprüfbescheinigungen ohne Unterschrift und ohne Siegel haben keine Gültigkeit. Diese EU-Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

(13)

Anlage

(14) EU-Baumusterprüfbescheinigung PTB 11 ATEX 1032 X, Ausgabe: 4

(15) Beschreibung des Produkts

Das Szintillations-Messgerät Typ LB 480 ist Teil eines Messsystems für die industrielle Prozessüberwachung. Es dient zur kontinuierlichen Messung des Füllstandes in Behältern oder Bunkern mit flüssigem, körnigem, viskosem oder krustenbildendem Inhalt sowie zur Messung der Beladung auf Förderbändern und der Dichte von Flüssigkeiten, Suspensionen, Trüben und Schüttgütern, es wird auch für die kontinuierliche Messung von Füllstand, Flächengewicht, Asche, Schwefel, Wasserstoff und andere spezielle Anwendungen eingesetzt.

Das Messprinzip basiert auf der Absorption von Gamma-Strahlen. Die Strahlenquelle ist nicht Bestandteil des Messgerätes und nicht Bestandteil dieses Zertifikates.

Das Gerät besteht aus dem Szintillations-Detektor mit der zugehörigen Auswerteelektronik in einem gemeinsamen Gehäuse in der Zündschutzart Druckfeste Kapselung "d" oder in der Zündschutzart Staubschutz durch Gehäuse "t".

Der Typ LB 480 des Szintillations-Messgerätes wird erweitert, um die wahlweise Ausführung als zugehöriges elektrisches Betriebsmittel mit den Signalausgängen OC-Eingang, PT100 und HART-Stromausgang in der Zündschutzart Eigensicherheit "i".

Die Versorgung (Power Supply) und die Schnittstelle RS485 sind nichteigensicher ausgeführt.

Das mit dem Detektor-Gehäuse integrierte Anschlussgehäuse ist entweder in der Zündschutzart Druckfeste Kapselung "d", oder in der Zündschutzart Erhöhte Sicherheit "e", oder in der Zündschutzart Staubschutz durch Gehäuse "t" bzw. jeweils in der Kombination mit der Zündschutzart Eigensicherheit "i" ausgerüstet.

Die entsprechenden Varianten sind in einem Typschlüssel neu aufgelistet und lauten künftig wie nachstehend aufgeführt.

Der Zusammenhang zwischen Variante, Schutzart, Temperaturklasse und Umgebungstemperatur wird neu festgeschrieben und ist in nachstehender Tabelle aufgeführt.

Seite 2/8

EU-Baumusterprüfbescheinigungen ohne Unterschrift und ohne Siegel haben keine Gültigkeit.
Diese EU-Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden.
Auszüge oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

Zuordnung der Umgebungstemperatur

Zündschutzart	Temperatur- klasse	Variante	Typschlüssel	Umgebungstemperatur
Ex db IIC Gb Ex tb IIIC Db	T6 T75 °C	A1, B1, E1	LB 480-xx-AC-xx LB 480-xx-BC-xx	-40 °C ≤ T _a ≤ +60 °C
Ex db eb IIC Gb Ex tb IIIC Db	T6 T80 °C	E2	LB 480-xx-1C-xx LB 480-xx-2C-xx	-40 °C ≤ T _a ≤ +60 °C
Ex db eb IIC Gb Ex tb IIIC Db	T6 T80 °C	A2, B2, E2	LB 480-xx-1C-xx LB 480-xx-2C-xx	-40 °C ≤ T _a ≤ +65 °C
For the stelloop	T	40 DO	LD 400 4 40	40 °C < T < 100 °C
Ex db eb IIC Gb	l T5	A2. B2	LB 480-1x-1C-xx	-40 °C ≤ T _a ≤ +80 °C

Ex db eb IIC Gb	T5	A2, B2	LB 480-1x-1C-xx LB 480-1x-2C-xx	-40 °C ≤ T _a ≤ +80 °C
Ex tb IIIC Db	T95 °C		LB 480-2x-1C-xx LB 480-2x-2C-xx	
Ex db [ia Ga] IIC Gb Ex tb [ia Da] IIIC Db	T6 T80 °C	A1, B1, E1	LB 480-xx-CC-xx LB 480-xx-DC-xx	-40 °C ≤ T _a ≤ +50 °C
Ex db eb [ia Ga] IIC Gb Ex tb [ia Da] IIIC Db	T6 T80 °C	A2, B2, E2	LB 480-xx-3C-xx LB 480-xx-4C-xx	-40 °C ≤ T _a ≤ +50 °C

Seite 3/8

EU-Baumusterprüfbescheinigungen ohne Unterschrift und ohne Siegel haben keine Gültigkeit. Diese EU-Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

Typschlüssel

.B480	•			-			-					Variant	Comment
		1	1									Bx	Point Detector 50x50
		1	2									Bx	Point Detector 50x50 + WC
		1										Bx	Point Detector
		2	Α									Ax	Rod Detector 500 mm
		2	В									Ax	Rod Detector 500 mm + WC
		2										Ax	
		2	K									Ax	Rod Detector 2000 mm
		2	L									Ax	Rod Detector 2000 mm + WC
		3	1									Ex	Super-Sens
		3	2									Ex	Super-Sens + WC
		3										Ex	
		4	1									Ex	Tower-Sens
		4	2									Ex	Tower-Sens + WC
		4										Ex	
					0	0							without Ex-type approval
					1			-		_		x2	ATEX/IECEx Ex det (passive / slave)
					2							x2	ATEX/IECEx Ex det (active)
					3			_				x2	ATEX/IECEx Ex deit (passive)
					4							x2	ATEX/IECEx Ex deit (active)
					A							x1	ATEX/IECEx Ex dt (passive / slave)
	 		_	_	В			_		_		x1	ATEX/IECEx Ex dt (active)
					С			_				x1	ATEX/IECEx Ex dit (passive / slave)
	 _				D							x1	ATEX/IECEx Ex dit (active)
						Α		_					Ex-Revision
						В							Ex-Revision (1. Supplement)
	_	_				С		-					Ex-Revision (2. Issue)
							-	-					
													Signal Output (Slave, HART, etc.)
									1				Power supply 24 V _{DC}
									2				Power supply: 100 - 240 V _{AC}
								1			.		non Ex-relevant parameter

Seite 4/8

EU-Baumusterprüfbescheinigungen ohne Unterschrift und ohne Siegel haben keine Gültigkeit. Diese EU-Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

Elektrische Daten

Versorgung (Klemme 1, 2)

(Klemme 3, 4)

Schnittstellen Stromkreis RS485 (Klemme 5, 5A, 6, 6A)

Thermometerstromkreis (PT100)

(Klemme 15, 16)

max. 240 V, 50/60 Hz, max. 12 VA

max. 24 V (DC), max. 12 W

 $U_{\rm m} = 250 \text{ V}$

in Zündschutzart erhöhter Sicherheit

Ex eb IIB/IIC 5 V (DC), 20 mA

Nur zum Anschluss an Schnittstellen Stromkreise RS485 anderer Szintillations-Messgeräte LB 480 und einer Auswerteeinheit mit gleichwertiger

Schutzbeschaltung.

in Zündschutzart Eigensicherheit

Ex ia IIB/IIC/IIIC

Höchstwerte:

Uo 14 V 27,7 mA 10 Po = 97 mW

Kennlinie linear

11 nF C_i =

vernachlässigbar klein Li

Höchstzulässige äußere Werte für gemeinsam wirksame Reaktanzen (C_i ist nicht berücksichtigt).

(gemäß ISpark-6.2)

I (mall)	IIB / IIIC	IIC
L _o (mH)	C _o (µF)	C _o (µF)
0,1	4,6	0,73
0,5	4,0	0,71
1,0	3,3	0,59

Der Widerstandsthermometer-Stromkreis ist galvanisch mit dem schaltungsinternen Versorgungsstromkreis und der Erde verbunden.

Open-Collector-Stromkreis

in Zündschutzart Eigensicherheit

Ex ia IIB/IIC/IIIC

(Klemme 11, 12)

Höchstwerte:

Ui 15 V l_i = 26,6 mA Pi 100 mW nF C_i = 11

vernachlässigbar klein

Der Open-Collector-Stromkreis ist von Erde und allen anderen Stromkreisen sicher galvanisch getrennt.

Seite 5/8

EU-Baumusterprüfbescheinigungen ohne Unterschrift und ohne Siegel haben keine Gültigkeit. Diese EU-Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden.
Auszüge oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

HART-Stromausgang (Source Mode)

(Klemme 17, 18)

in Zündschutzart Eigensicherheit

Ex ia IIB/IIC/IIIC

Höchstwerte:

 U_o = 25,2 V I_o = 101 mA P_o = 635 mW

Kennlinie linear

 C_i = 3 nF L_i = 20 μ H

Höchstzulässige äußere Werte für gemeinsam wirksame Reaktanzen ($L_{\rm i}$ und $C_{\rm i}$ sind nicht berücksichtigt).

(gemäß ISpark-6.2)

I (mall)	IIB / IIIC	IIC
L _o (mH)	C _o (µF)	C _o (µF)
0,44	0,52	0,084
0,8	0,45	0,066
1,6	0,38	0,049
13,0	0,37	

Einzelreaktanzen nach Tabelle A.2 und Bild A.4 bzw. A.6 aus EN 60079-11						
IIB	IIIC	IIC				
L _o (mH)	C _o (µF)	L _o (mH)	C _o (µF)			
17	0,820	4	0,107			

oder

HART-Stromausgang (Sink Mode)

(Klemme 17, 18)

in Zündschutzart Eigensicherheit Ex ia IIB/IIC/IIIC

nur zum Anschluss an einen bescheinigten eigensicheren Stromkreis. Höchstwerte:

Ui 30 V li = 152 mA P_i 1,14 W = Ci = 3 nF L_{i} 20 μΗ

Die HART-Stromausgänge (Source Mode bzw. Sink Mode) des Stromausgangsmoduls sind sicher galvanisch von Erde und allen anderen Stromkreisen getrennt.

Änderungen dieser und vorheriger Ausgaben

Es wurden elektronische Bauteile gegen neue Produktgruppen mit identischen Parametern getauscht.

Die Typaufschlüsselung wurde geändert.

Anpassung Schaltungsteil der Absicherung des Eingangs.

Seite 6/8

EU-Baumusterprüfbescheinigungen ohne Unterschrift und ohne Siegel haben keine Gültigkeit.
Diese EU-Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden.
Auszüge oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

Änderungen in der Ausgabe 3

1. Für die Befestigung des Glasfensters können neben der bisher verwendeten Vergussmasse auch folgende Materialien verwendet werden:

3M Scotch-Weld™ DP 105 Master Bond EP41S-6 Panacol Vitralit® 2028

Bei Verwendung des Materials 3M Scotch-Weld™ DP 105 reduziert sich die maximale Umgebungstemperatur auf +60 °C.

 Anschlussplatine mit geänderter Pinbelegung an der RS485-Schnittstelle, um terminierte und nicht terminierte Master-Melder und Anschluss einer Auswerteeinheit mit äquivalenter Schutzbeschaltung zu ermöglichen.

Änderungen in den Ausgaben 1 und 2

Es wurden elektronische Bauteile gegen neue Produktgruppen mit identischen Parametern getauscht. Die betreffenden Bauteile befinden sich im Ex-d Gehäuse.

Das Kernmaterial der verwendeten Stromkompensationsdrosseln wurde getauscht. Die Stromkompensationsdrosseln befinden sich im Ex-d Gehäuse und sind galvanisch über Transformatoren und Optokoppler vom eigensicheren Schaltungsteil getrennt. Über Spannungs- und Strombegrenzungen kann das Bauteil nicht außen wirken.

Die Temperaturklassenbezeichnung in der Ex Kennzeichnung wurde geändert.

Anpassung der besonderen Bedingung für Gerätetypen mit Eigensicheren "ia" Ausgangsstromkreisen.

(16) Prüfbericht PTB Ex 23-23149

Seite 7/8

EU-Baumusterprüfbescheinigungen ohne Unterschrift und ohne Siegel haben keine Gültigkeit. Diese EU-Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

(17) Besondere Bedingungen

Dr.-Ing. M. Thedens Direktor und Profess

Die besonderen Bedingungen und Hinweise für Herstellung und Betrieb werden im Folgenden festgelegt.

- Aufgrund von Abs.5.1 aus EN 60079-1 ist darauf hinzuweisen, dass die Spaltgeometrien des druckfest gekapselten Gehäuses von den Tabellenwerten aus EN 60079-1 abweichen. Eine Reparatur an den zünddurchschlagsicheren Spalten ausschließlich entsprechend den Werten nach Tabelle 1 bzw. Tabelle 2 aus EN 60079-1 ist nicht zulässig und darf nur entsprechend den konstruktiven Vorgaben des Herstellers erfolgen.
- Der Schnittstellen-Stromkreis RS485 dient ausschließlich der Kommunikation mehrerer Sonden und einer Auswerteeinheit mit gleichwertiger Schutzbeschaltung untereinander und darf nicht mit externen Stromkreisen verbunden werden.
- 3) In Gasatmosphären müssen, bei der Wahl der Gruppe IIB bzw. IIC für die eigensicheren Stromkreise, alle eigensicheren Stromkreise und das Szintillations-Messgerät Typ LB 480 vollständig in der gewählten Gruppe IIB bzw. IIC betrieben werden.
- 4) Die Sonde darf nicht in Zone 0 bzw. Zone 20 installiert werden. Das Schutzniveau "ia" erlaubt die sichere Verwendung von Messmitteln, die ansonsten lediglich in Zone 0 bzw. Zone 20 eingesetzt werden dürfen.

(18) Grundlegende Sicherheits- und Gesundheitsanforderungen

Erfüllt durch Übereinstimmung mit den vorgenannten Normen.

Konformitätsbewertungsstelle. Sektor Explosionsschutz

Im Auftrag

Braunschweig, 19. Januar 2024

Seite 8/8

EU-Baumusterprüfbescheinigungen ohne Unterschrift und ohne Siegel haben keine Gültigkeit.
Diese EU-Baumusterprüfbescheinigung darf nur unverändert weiterverbreitet werden.
Auszüge oder Änderungen bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

5.18 IECEx Zertifikat – IECEx PTB 12.0038X

IECEx Certificate of Conformity

INTERNATIONAL ELECTROTECHNICAL COMMISSION IEC Certification System for Explosive Atmospheres

for rules and details of the IECEx Scheme visit www.iecex.com

Certificate No.:

IECEx PTB 12.0038X

Page 1 of 4

Certificate history: Issue 4 (2022-04-08)

Status:

Current

Issue No: 5

Issue 3 (2020-09-18)

Date of Issue:

2023-12-19

Issue 2 (2020-03-23) Issue 1 (2013-11-28) Issue 0 (2012-07-26)

Applicant:

Equipment:

Berthold Technologies GmbH & Co. KG

Calmbacher Str. 22 75323 Bad Wildbad

Germany

Scintillation measuring equipment of the LB 480 series

Optional accessory:

Component certificates IECEx KEM 07.0057U, IECEx EPS 13.0045U

Type of Protection:

Ex db eb [ia] IIC Ex tb [ia Da] IIIC

Marking:

Ex db IIC T6 Gb,

Ex db lic 16 db,

Ex db eb liC T5 Gb, Ex db eb liC T6 Gb,

Ex db [ia Ga] liC T6 Gb, Ex db eb [ia Ga] liC T6 Gb,

Ex tb liiC T95°C Db resp. Ex tb liiC T80°C Db resp. Ex tb liiC T60°C Db,

Ex tb [ia Da] liiC T80°C Db resp. Ex tb [ia Da] liiC T60°C Db

Approved for issue on behalf of the IECEx Certification Body:

Position:

Dr.-Ing. Martin Thedens

Head of Department "Explosion Protection in Sensor Technology and Instrumentation"

Signature:

(for printed version)

(for printed version)

tuleus 241.

This certificate and schedule may only be reproduced in full.
 This certificate is not transferable and remains the property of the issuing body.
 The Status and authenticity of this certificate may be verified by visiting www.lecex.com or use of this QR Code.

Certificate issued by:

Physikalisch-Technische Bundesanstalt (PTB) **Bundesallee 100** 38116 Braunschweig

Germany

IECEx Certificate of Conformity

INTERNATIONAL ELECTROTECHNICAL COMMISSION **IEC Certification System for Explosive Atmospheres**

for rules and details of the IECEx Scheme visit www.iecex.com

Certificate No.:

IECEx PTB 12.0038X

Page 1 of 4

Certificate history:

Current

Issue No: 5

Issue 4 (2022-04-08) Issue 3 (2020-09-18)

Date of Issue:

Issue 2 (2020-03-23) Issue 1 (2013-11-28)

2023-12-19

Issue 0 (2012-07-26)

Applicant:

Berthold Technologies GmbH & Co. KG

Calmbacher Str. 22 75323 Bad Wildbad

Equipment:

Scintillation measuring equipment of the LB 480 series

Optional accessory:

Component certificates IECEx KEM 07.0057U , IECEx EPS 13.0045U

Type of Protection:

Ex db eb [ia] IIC Ex tb [ia Da] IIIC

Marking:

Ex db IIC T6 Gb.

Ex db eb IIC T5 Gb, Ex db eb IIC T6 Gb,

Ex db [ia Ga] IIC T6 Gb, Ex db eb [ia Ga] IIC T6 Gb, Ex tb IIIC T95°C Db resp. Ex tb IIIC T80°C Db resp. Ex tb IIIC T60°C Db, Ex tb [ia Da] IIIC T80°C Db resp. Ex tb [ia Da] IIIC T60°C Db

Approved for issue on behalf of the IECEx

Certification Body:

Dr.-Ing. Martin Thedens

Position:

Head of Department "Explosion Protection in Sensor Technology

and Instrumentation"

Signature:

(for printed version)

Date:

(for printed version)

tuleus 241.

This certificate and schedule may only be reproduced in full.
 This certificate is not transferable and remains the property of the issuing body.
 The Status and authenticity of this certificate may be verified by visiting www.iecex.com or use of this QR Code.

Certificate issued by:

Physikalisch-Technische Bundesanstalt (PTB) Bundesallee 100 38116 Braunschweig Germany

IECEx Certificate of Conformity

Certificate No.:

IECEx PTB 12.0038X

Page 2 of 4

Date of issue:

2023-12-19

Issue No: 5

Manufacturer:

Berthold Technologies GmbH & Co. KG

Calmbacher Str. 22 75323 Bad Wildbad

Germany

Manufacturing locations:

This certificate is issued as verification that a sample(s), representative of production, was assessed and tested and found to comply with the IEC Standard list below and that the manufacturer's quality system, relating to the Ex products covered by this certificate, was assessed and found to comply with the IECEx Quality system requirements. This certificate is granted subject to the conditions as set out in IECEx Scheme Rules, IECEx 02 and Operational Documents as amended

STANDARDS:

The equipment and any acceptable variations to it specified in the schedule of this certificate and the identified documents, was found to comply with the following standards

IEC 60079-0:2017

Explosive atmospheres - Part 0: Equipment - General requirements

Edition:7.0

Explosive atmospheres - Part 1: Equipment protection by flameproof enclosures "d"

IEC 60079-1:2014 Edition:7.0

IEC 60079-11:2011 Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i" Edition:6.0

IEC 60079-31:2013 Explosive atmospheres - Part 31: Equipment dust ignition protection by enclosure "t"

Edition:2

IEC 60079-7:2017

Edition:5.1

Explosive atmospheres - Part 7: Equipment protection by increased safety "e"

This Certificate does not indicate compliance with safety and performance requirements other than those expressly included in the Standards listed above.

TEST & ASSESSMENT REPORTS:

A sample(s) of the equipment listed has successfully met the examination and test requirements as recorded in:

Test Reports:

DE/PTB/ExTR12.0052/00 DE/PTB/ExTR12.0052/03

DE/PTB/ExTR12.0052/01 DE/PTB/ExTR12.0052/04

DE/PTB/ExTR12.0052/02 DE/PTB/ExTR12.0052/05

Quality Assessment Report:

DE/PTB/QAR06.0011/07

IECEx Certificate of Conformity

Certificate No.:

IECEx PTB 12,0038X

Page 3 of 4

Date of issue:

2023-12-19

Issue No: 5

EQUIPMENT:

Equipment and systems covered by this Certificate are as follows:

See the attached Data Sheet.

SPECIFIC CONDITIONS OF USE: YES as shown below:

- 1. Due to the requirements of clause 5.1, IEC 60079 1 it shall be pointed out that the joint dimensions of the flameproof enclosure deviate from the values tabulated in IEC 60079 1. Repairing of flameproof joints exclusively according to the values specified in table 1 or table 2 of IEC 60079 1 is not permitted and may only be carried out in accordance with the constructive specifications given by the manufacturer.
- 2. The interface circuit RS485 serves exclusively for intercommunication of the probes and must not be connec ted to an external RS485 circuit.
- 3. In gas atmospheres must be fully operated in the selected group IIB or IIC in the choice of group IIB or IIC for the intrinsically safe circuits, all intrinsically safe circuits and the scintillation meter type LB 480
- 4. The probe must not be installed in zone 0 or zone 20. The protection level "ia" allows the safe use of measuring equipment that may otherwise only be used in zone 0 or zone 20.

IECEx Certificate of Conformity

Certificate No.:

IECEx PTB 12.0038X

Page 4 of 4

Date of issue:

2023-12-19

Issue No: 5

DETAILS OF CERTIFICATE CHANGES (for issues 1 and above)
Replacement of the Mosfet type Q002 with an equivalent one.
Replacement of an upstream combination of resistor and fuse with a new type of fuse with a breaking capacity of 1500 A. Adaptation of the layout according to the changes mentioned above. Adaptation of the type code.

COCA120038X-05_1.pdf

Attachment to Certificate IECEx PTB 12.0038 X Issue 05

Applicant:

Berthold Technologies GmbH & Co. KG

Calmbacher Straße 22, 75323 Bad Wildbad, Germany

Electrical Apparatus:

Scintillation measuring equipment type LB480

Description of equipment

The scintillation measuring equipment type LB 480 is part of a measuring system for monitoring industrial processes. It is used for continuously measuring the level in tanks or bins that contain liquid, granular, viscous or encrustation-forming media, and for measuring conveyor belt charges, and the density of liquids, suspensions, slurries and bulk solids. It is also used for continuously measuring level, weight per unit area, ash, sulphur, hydrogen and other specific application.

The measuring principle is based on the absorption of gamma rays. The radiation source does not part of the measuring equipment and not part of this certificate.

The scintillation measuring equipment consists of a scintillation detector with associated electronics in a common housing type of protection Flameproof Enclosure "d" or in type of protection Dust Protection by Enclosure "t".

The type LB 480 of measuring equipment is extended to the choice of execution as associated electrical equipment to the signal outputs OC-input, PT100 and HART current output in type of protection Intrinsic Safety "i".

The power supply and the interface RS485 are designed not intrinsically safe.

The integrated with the detector-housing connector housing is either in type of protection Flameproof Enclosure "d", or in type of protection Increased Safety "e", or in type of protection Dust Protection by Enclosure "t" or in each case in combination with the type of protection Intrinsic Safety "i "equipped.

The relevant options are listed in a new type of key and read in future as indicated below.

The relationship between variation, type of protection, temperature class and ambient temperature is re-codified and is listed in the table below.

Physikalisch-Technische Bundesanstalt (PTB) Bundesallee 100, 38116 Braunschweig, Germany Postfach 33 45, 38023 Braunschweig, Germany Telephone +49 531 592-0, Telefax +49 531 592-3605 Page 1 of 5

Attachment to Certificate IECEx PTB 12.0038 X Issue 05

The marking of the equipment reads in the future as follows.

Ex db IIC T6 Gb

resp.

Ex db eb IIC T6 Gb

resp.

Ex db eb IIC T5 Gb

resp.

Ex db eb [ia Ga] IIC T6 Gb

Ex db [ia Ga] IIC T6 Gb Ex tb IIIC T80 °C Db

resp.

Ex tb [ia Da] IIIC T80 °C Db

Ex tb IIIC T95 °C Db

Assignment of the ambient temperature

Protection	Temperature class	Variant	Product key	Ambient temperature
Ex db IIC Gb	T6	A1, B1,	LB 480-xx-AC-xx	-40 °C ≤ T _a ≤ +60 °C
Ex tb IIIC Db	T75 °C	E1	LB 480-xx-BC-xx	
Ex db eb IIC Gb	T6	A2, B2,	LB 480-xx-1C-xx	-40 °C ≤ T _a ≤ +65 °C
Ex tb IIIC Db	T80 °C	E2	LB 480-xx-2C-xx	
Ex db eb IIC Gb Ex tb IIIC Db	T5 T95 °C	A2, B2	LB 480-1x-1C-xx LB 480-1x-2C-xx LB 480-2x-1C-xx LB 480-2x-2C-xx	-40 °C ≤ T _a ≤ +80 °C
Ex db [ia Ga] IIC Gb	T6	A1, B1,	LB 480-xx-CC-xx	-40 °C ≤ T _a ≤ +50 °C
Ex tb [ia Da] IIIC Db	T80 °C	E1	LB 480-xx-DC-xx	
Ex db eb [ia Ga] IIC Gb Ex tb [ia Da] IIIC Db	T6 T80 °C	A2, B2, E2	LB 480-xx-3C-xx LB 480-xx-4C-xx	-40 °C ≤ T _a ≤ +50 °C

Physikalisch-Technische Bundesanstalt (PTB) Bundesallee 100, 38116 Braunschweig, Germany Postfach 345, 38023 Braunschweig, Germany Telephone +49 531 592-0, Telefax +49 531 592-3605 Page 2 of 5

Attachment to Certificate IECEx PTB 12.0038 X Issue 05

Type code

B480	-			-			-			-	 Variant	
		1	1								Bx	Point Detector 50x50
		1	2								Bx	Point Detector 50x50 + WC
		1	-	Н							Bx	Point Detector
		2	Α	Н							Ax	Rod Detector 500 mm
		2	В								Ax	Rod Detector 500 mm + WC
		2									 Ax	
		2	K								Ax	Rod Detector 2000 mm
		2	L								Ax	Rod Detector 2000 mm + WC
		3	1								 Ex	Super-Sens
		3	2				-			-	 Ex	Super-Sens + WC
		3									Ex	Cupar cond - 110
		L.										
		4	1								Ex	Tower-Sens
		4	2								Ex	Tower-Sens + WC
		4	٠								 Ex	
					0	0	-					without Ex-type approval
					1						x2	ATEX/IECEx Ex det (passive / slave)
					2						x2	ATEX/IECEx Ex det (active)
					3						x2	ATEX/IECEx Ex deit (passive)
					4						x2	ATEX/IECEx Ex deit (active)
					Α						x1	ATEX/IECEx Ex dt (passive / slave)
					В						x1	ATEX/IECEx Ex dt (active)
					C						x1	ATEX/IECEx Ex dit (passive / slave)
					D						x1	ATEX/IECEx Ex dit (active)
						A						Ex-Revision
						В						Ex-Revision (1. Supplement)
						C						Ex-Revision (2. Issue)
				-	-	-	-			-	 	Signal Output (Slave, HART, etc.)
									1			Power supply 24 V _{DC}
				1	1		1	1	2			Power supply: 100 - 240 V _{AC}
			-		1			1		1	 	non Ex-relevant parameter

Physikalisch-Technische Bundesanstalt (PTB) Bundesallee 100, 38116 Braunschweig, Germany Postfach 33 45, 38023 Braunschweig, Germany Telephone +49 531 592-0, Telefax +49 531 592-3605

Page 3 of 5

Attachment to Certificate IECEx PTB 12.0038 X Issue 05

Electrical data

Power supply (Terminal 1, 2)

(Terminal 3, 4)

Interface circuit RS485

(Terminal 5, 6)

Thermometer circuit (PT100)

(Terminal 15, 16)

max. 240 V, 50/60 Hz, max. 12 VA

max. 24 V (DC), max. 12 W

 $U_{\rm m} = 250 \text{ V}$

type of protection Increased Safety

Ex ib IIB/IIC

5 V (DC), 20 mA

Only for connection to RS485 interface circuits

other scintillation instruments LB 480

type of protection Intrinsic Safety

Ex ia IIB/IIC/IIIC

maximum Values: = U。 14 V

27.7 mA

P_o = 97 mW

Characteristic linear C_i = 11 nF

negligible small

Maximum permissible external values for common effective reactances (Ci is not considered) (according to ISpark-6.2).

I (mH)	IIB / IIIC	IIC	
L _o (mH)	C _o (μF)	C _o (µF)	
0,1	4,6	0,73	
0,5	4,0	0,71	
1,0	3,3	0,59	

The RTD circuit is electrically connected to the internal supply circuit and the earth.

Open collector circuit

type of protection Intrinsic Safety

Ex ia IIB/IIC/IIIC

(Terminal 11, 12) maximum Values:

15 V Ui 26.6 mA li =

= 100 mW

Ci = 11 nF

negligible small

The open collector circuit is safely electrically isolated from earth and all other circuits.

Physikalisch-Technische Bundesanstalt (PTB) Bundesallee 100, 38116 Braunschweig, Germany Postfach 33 45, 38023 Braunschweig, Germany Telephone +49 531 592-0, Telefax +49 531 592-3605

Page 4 of 5

Attachment to Certificate IECEx PTB 12.0038 X Issue 05

HART-current output (Source Mode)

(Terminal 17, 18)

type of protection Intrinsic Safety

Éx ia IIB/IIC/IIIC

maximum Values: 25.2 V U_o =

= 101 mA

= 635 mW

Characteristic linear C_{i} 3 nF

 L_{i} 20 μΗ

Maximum permissible external values for o	common ef-
fective reactances (Ci is not considered).	
(according to ISpark-6.2)	

1 /m/U)	IIB / IIIC	IIC	
L _o (mH)	C _o (µF)	C _o (µF)	
0,44	0,52	0,084	
0,8	0,45	0,066	
1,6	0,38	0,049	
13,0	0,37		

Single reacta EN 60079-11		A.2 and figure	A.4 or A.6 of		
IIB /	IIIC	IIC			
L _o (mH)	C _o (µF)	L _o (mH)	C _o (µF)		
17	0.820	4	0.107		

or

HART- current output (Sink Mode)

(Terminal 17, 18)

type of protection Intrinsic Safety

Éx ia IIB/IIC/IIIC

Only for connection to a certified intrisically safe circuit. Maximum Values:

Ui = 30 V

152 mA

lį P_i = 1.14 W

Ci = 3 nF

20 μΗ

The HART current output (source mode or sink mode) of the current output module are safely electrically isolated from earth and all other circuits.

IECEx Test Report Summary

INTERNATIONAL ELECTROTECHNICAL COMMISSION IEC Certification System for Explosive Atmospheres

for rules and details of the IECEx Scheme visit www.iecex.com

ExTR Ref. No.: DE/PTB/ExTR12.0052/05 Page 1 of 1

EXTR Free Ref. No.: PTB 11 ATEX 1032 X A3 incl. PTB Ex 22-11191

Status: Issued

Details of change:

Replacement of the Mosfet type Q002 with an equivalent one. Replacement of an upstream combination of resistor and fuse with a new type of fuse with a breaking capacity of 1500 A.

Date of issue:2023-12-19

Adaptation of the layout according to the changes mentioned above.

Adaptation of the type code.

List of Standards Covered:

IEC 60079-0:2017 Edition:7.0, IEC 60079-1:2014 Edition:7.0, IEC 60079-1:2011 Edition:6.0, IEC 60079-3:2013 Edition:9.00, IEC 9.00, IEC 9.00,

Issuing ExTL:

PTB - Physikalisch-Technische Bundesanstalt (PTB)

Endorsing ExCB:

PTB - Physikalisch-Technische Bundesanstalt (PTB)

Manufacturer:

Berthold Technologies GmbH & Co. KG

Calmbacher Str. 22 75323 Bad Wildbad

Location of Manufacturer:

Germany

Ex Protection:

Ex db eb [ia] IIC Ex tb [ia Da] IIIC

Ratings:

Ex db IIC T6 Gb, Ex db eb IIC T5 Gb, Ex db eb IIC T6 Gb,

Ex db [ia Ga] IIC T6 Gb, Ex db eb [ia Ga] IIC T6 Gb, Ex db [ia Ga] IIC T6 Gb, Ex db eb [ia Ga] IIC T6 Gb, Ex db IIIC T95°C Db resp. Ex db IIIC T80°C Db resp. Ex db IIIC T60°C Db, Ex db [ia Da] IIIC T80°C Db resp. Ex db [ia Da] IIIC T60°C Db

Equipment:

Scintillation measuring equipment

Model Reference: LB 480 series

Related IECEx Certificates:

IECEx PTB 12.0038X Issue 5

Comments:

5.19 UKCA Zertifikat – EMA21UKEX0050X

1 UNITED KINGDOM CONFORMITY ASSESSMENT

UK TYPE EXAMINATION CERTIFICATE

2 Product or Protective System Intended for use in Potentially Explosive Atmospheres SI 2016:1107 (as amended) – Schedule 3A, Part 1

3 Type Examination Certificate No.: EMA21UKEX0050X

4 Product: Scintillation Measuring Equipment, LB 480
5 Manufacturer: Berthold Technologies GmbH & Co. KG

6 Address: Calmbacher Strasse 22, 75323 Bad Wildbad, Germany

- 7 This product and any acceptable variation thereto is specified in the schedule to this certificate and the documents therein referred to.
- 8 Element Materials Technology, Approved Body number 0891, in accordance with Regulation 42 of the Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres Regulations 2016, SI 2016:1107 (as amended), certifies that this product has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of products intended for use in potentially explosive atmospheres given in Schedule 1 of the Regulations.

The examination and test results are recorded in the confidential report PTB Ex 22-11191.

9 Compliance with the Essential Health and Safety Requirements has been assured by compliance with:

EN IEC 60079-0:2018 EN 60079-1:2014 EN IEC 60079-7:2015 + A1:2018

EN 60079-11:2012 EN 60079-31:2014

Except in respect of those requirements listed at section 18 of the schedule.

- 10 If the sign "X" is placed after the certificate number, it indicates that the product is subject to specific conditions of use specified in the schedule to this certificate.
- 11 This TYPE EXAMINATION CERTIFICATE relates only to the design and construction of the specified product. Further requirements of the Regulations apply to the manufacturing process and supply of this product. These are not covered by this certificate.
- 12 The marking of this product shall include the following:
 - ⟨Ex⟩ II 2 G Ex db IIC T6 Gb
 - (Ex) II 2 G Ex db eb IIC T5 G
 - (x) II 2 G Ex db [ia Ga] IIC T6 G
 - ⟨Ex⟩ II 2 D Ex tb IIIC T95 °C Db
 - ⟨Ex⟩ II 2 G Ex tb IIIC T60 °C
 - (Ex) II 2 D Ex tb [ia Da] IIIC T80 °C Db

II 2 G Ex db eb IIC T6 Gb

(Ex) II 2 G Ex db eb [ia Ga] IIC T6 Gb

II 2 D Ex tb IIIC T80 °C Db

II 2 D Ex tb [ia Da] IIIC T60 °C

This certificate and its schedules may only be reproduced in its entirety and without change. This certificate is issued in accordance with the Element Materials Technology Ex Certification Scheme.

S.P. Wilson

S P Winsor, Certification Manager

Issue date: 2023-04-14 Page 1 of 7 CSF341 4.0

Unit 1, Pendle Place, Skelmersdale, West Lancashire, WN8 9PN, United Kingdom Element Materials Technology Warwick Ltd Company Reg No. 02536659

15 Description of Product

The scintillation measuring equipment type LB 480 is part of a measuring system for monitoring industrial processes. It is used for continuously measuring the level in tanks or bins that contain liquid, granular, viscous or encrustation-forming media, and for measuring conveyor belt charges, and the density of liquids, suspensions, slurries and bulk solids. It is also used for continuously measuring level, weight per unit area, ash, sulphur, hydrogen and other specific application.

The measuring principle is based on the absorption of gamma rays. The radiation source does not part of the measuring equipment and not part of this certificate.

The scintillation measuring equipment consists of a scintillation detector with associated electronics in a common housing type of protection Flameproof Enclosure "d" or in type of protection Dust Protection by Enclosure "t".

The type LB 480 of measuring equipment is extended to the choice of execution as associated electrical equipment to the signal outputs OC-input, PT100 and HART current output in type of protection Intrinsic Safety "i".

The power supply and the interface RS485 are designed not intrinsically safe.

The integrated with the detector-housing connector housing is either in type of protection Flameproof Enclosure "d", or in type of protection Increased Safety "e", or in type of protection Dust Protection by Enclosure "t" or in each case in combination with the type of protection Intrinsic Safety "i "equipped.

The relevant options are listed in a new type of key and read in future as indicated below.

The relationship between variation, type of protection, temperature class and ambient temperature is recodified and is listed in the table below.

Assignment of the ambient temperature

Protection	Temperature class	Variant	Product key	Ambient temperature
Ex db IIC Gb	T6	A1, B1, E1	LB 480-xx-AC-xx	-40 °C ≤ Ta ≤ +60 °C
Ex tb IIIC Db	T75 °C		LB 480-xx-BC-xx	
Ex db eb IIC Gb	Т6	E2	LB 480-xx-1C-xx	-40 °C ≤ Ta ≤ +60 °C
Ex tb IIIC Db	T80 °C		LB 480-xx-2C-xx	1
Ex db eb IIC Gb	Т6	A2, B2, E2	LB 480-xx-1C-xx	-40 °C ≤ Ta ≤ +65 °C
Ex tb IIIC Db	T80 °C		LB 480-xx-2C-xx	
Ex db eb IIC Gb	T5	A2, B2	LB 480-1x-1C-xx	-40 °C ≤ Ta ≤ +80 °C
			LB 480-1x-2C-xx LB 480-2x-1C-xx	
Ex tb IIIC Db	T95 °C		LB 480-2x-2C-xx	
Ex db [ia Ga] IIC Gb	Т6	A1, B1, E1	LB 480-xx-CC-xx	-40 °C ≤ Ta ≤ +50 °C
Ex tb [ia Da] IIIC Db	T80 °C		LB 480-xx-DC-xx	
Ex db eb [ia Ga] IIC Gb	Т6	A2, B2, E2	LB 480-xx-3C-xx	-40 °C ≤ Ta ≤ +50 °C
Ex tb [ia Da] IIIC Db	T80 °C		LB 480-xx-4C-xx	

EMA21UKEX0050X, 2023-04-14

Page 2 of 7

CSF341 4.0

480						-			-		Variante	Beschreibung
		1	1								Bx	Point Detector 50x50
		1	2								Bx	Point Detector 50x50 + WC
		1									Bx	Point Detector
		2	A								Ax	Rod Detector 500 mm
		2	В								Ax	Rod Detector 500 mm + WC
		2									Ax	
		2	K								Ax	Rod Detector 2000 mm
		2	L								Ax	Rod Detector 2000 mm + WC
		3	1								Ex	Super-Sens
		3	2								Ex	Super-Sens + WC
		3								1-	Ex	
		4	1			T			-	F	Ex	Tower-Sens
		4	2	TE			-	-		4	Ex	Tower-Sens + WC
		4								1	Ex	
				0	0	F		-				without Ex-type approval
				1		-					x2	ATEX/IECEx Ex det (passive / slave)
				2							x2	ATEX/IECEx Ex det (active)
			-	3						300	x2	ATEX/IECEx Ex deit (passive)
	-		-	4					2	47	x2	ATEX/IECEx Ex deit (active)
				A				-	4 5		x1	ATEX/IECEx Ex dt (passive / slave)
-				В				- 4	10		x1	ATEX/IECEx Ex dt (active)
-			-	С		=	1-2	-	-		x1	ATEX/IECEx Ex dit (passive / slave)
100				D			-				- x1	ATEX/IECEx Ex dit (active)
1				-	A	-	-		-		1 7	Ex-Revision
-	-			-	C	-						Ex-Revision (1. Supplement)
-	-			-	-			-	_		. —	Ex-Revision (2. Issue)
						1-	10		-			
												Signal Output (Slave, HART, etc.)
				-				1				Power supply 24 V _{DC}
	-			-				2				Power supply: 100 - 240 V _{AC} none Ex-relevant parameter

Electrical data

Power supply (Terminal 1, 2) (Terminal 3, 4)

Interface circuit RS485 (Terminal 5, 5A, 6, 6A)

Thermometer circuit (PT100) (Terminal 15, 16)

max. 240 V, 50/60 Hz, max. 12 VA or

max. 24 V (DC), max. 12 W, U_m = 250 V

type of protection Increased Safety Ex ib IIB/IIC;

5 V (DC), 20 mA

Only for connection to RS485 interface circuits other scintillation instruments LB 480 and an evaluation unit with equivalent means of protection.

type of protection Intrinsic Safety Ex ia IIB/IIC; maximum Values:

Uo = 14 = 27.7 L_{o} mΑ Po 97 mW Characteristic linear

Ci 11

nF negligible small

EMA21UKEX0050X, 2023-04-14

Page 3 of 7

CSF341 4.0

Maximum permissible external values for common effective reactances (C₁ is not considered). (according to ISpark-6.2)							
L _o (mH)	L₀ (mH) IIB IIC						
100 1000 1000	C₀ (µF)	C₀ (µF)					
0.1	0.1 4.6 0.73						
0.5	0.5 4.0 0.71						
1.0	3.3	0.59					

The RTD circuit is electrically connected to the internal supply circuit and the earth

Open collector circuit (Terminal 11, 12)

type of protection Intrinsic Safety Ex ia IIB/IIC; Maximum Values:

The open collector circuit is safely electrically isolated from earth and all other circuits.

HART-current output (Source Mode) (Terminal 17, 18)

type of protection Intrinsic Safety Ex ia IIB/IIC; maximum Values:

Maximum permissible external values for common effective reactances (Ci is not considered). (according to ISpark-6.2) L_o (mH) IIB IIC C_o (uF) C₀ (uF) 0.44 0.52 0.084 8.0 0.45 0.066 1.6 0.38 0.049 13.0 0.37

Single reactances to table A.2 and figure A.4 or A.6 of EN 60079-11						
IIB		IIC				
L₀ mH	C₀ µF	L₀ mH	C₀ µF			
17	0.820	4	0.107			

HART- current output (Sink Mode) (Terminal 17, 18)

type of protection Intrinsic Safety Ex ia IIB/IIC; Only for connection to a certified intrinsically safe circuit. Maximum Values:

Ui 30 V 152 mΑ li 1.14 W C_{i} = 3 nF Li = 20 μΗ

The HART current output (source mode or sink mode) of the current output module are safely electrically isolated from earth and all other circuits.

16 Test report No. (associated with this certificate issue): None

17 Specific Conditions of Use

- 1) Due to the requirements of clause 5.1, EN 60079-1 it shall be pointed out that the joint dimensions of the flameproof enclosure deviate from the values tabulated in EN 60079-1. Repairing of flameproof joints exclusively according to the values specified in table 1 or table 2 of EN 60079-1 is not permitted and may only be carried out in accordance with the constructive specifications given by the manufacturer.
- The interface circuit RS485 serves exclusively for intercommunication of the probes and must not be connected to an external RS485 circuit.
- In gas atmospheres must be fully operated in the selected group IIB or IIC in the choice of group IIB or IIC for the intrinsically safe circuits, all intrinsically safe circuits and the scintillation meter type LB 480.
- 4) The probe must not be installed in zone 0 or zone 20. The protection level "ia" allows the safe use of measuring equipment that may otherwise only be used in zone 0 or zone 20.

Attention is drawn to the operating and installation instructions which may contain useful information in relation to conditions of use.

18 Essential Health and Safety Requirements (Regulations Schedule 1)

In addition to the Essential Health and Safety Requirements covered by the standards listed at item 9, all other requirements are demonstrated in the relevant test reports.

The test reports were considered to satisfy the requirements of Schedule 1 with the exception of Essential Health and Safety Requirements 5 and 6, which were separately satisfied by the content of the label drawings and the instructions.

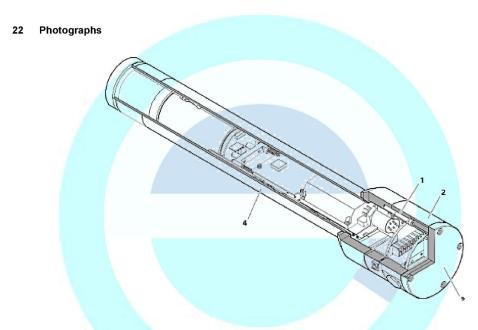
19 Drawings and Documents

The list of controlled technical documentation is given in Appendix A to this schedule.

EMA21UKEX0050X, 2023-04-14

Page 5 of 7

CSF341 4.0


20 Routine Tests

Overpressure test according to IEC 60079-1, clause 15.1 with 27.2 bar (for -60 $^{\circ}$ C) and 22.7 bar (for -20 $^{\circ}$ C) for welded enclosure.

Construction without welding is exempted from routine test as the overpressure test was performed with 4 times reference pressure.

21 Specific Conditions for Manufacture

None.

23 Details of Markings

EMA21UKEX0050X, 2023-04-14

Page 6 of 7

CSF341 4.0

24 Certificate History

Original certificate 2023-04-14 First issue.

This certificate is a consolidated certificate and reflects the latest status of the certification, including all variations and amendments.

25 Notes to UKCA marking

In respect of UKCA Marking, Element Materials Technology accepts no responsibility for the compliance of the product against all applicable Regulations in all applications.

26 Notes to this certificate

Element Materials Technology certification reference: TRA-054560-00 i3. (GU-BERQ-0003).

Throughout this certificate, the date format yyyy-mm-dd (year-month-day) is used.

Approved Body 0891 is the designation for Element Materials Technology Warwick Ltd.

27 Conditions for the validity of this certificate

This certificate remains valid for so long as:

- (i) The equipment listed in section 4 is manufactured in accordance with the documents listed in Appendix A of this certificate.
- (ii) The standards listed in section 9 of this certificate continue to satisfy the Essential Health and Safety Requirements of Schedule 1 of the Regulations SI 2016:1107 (as amended by SI 2019:696) and the generally acknowledged state of the art (e.g. as determined by the publishers of those standards).

APPENDIX A - TECHNICAL DOCUMENTS

Title:	Drawing No.:	Rev. Level:	Date:
Element list of scheduled drawings for this	Scheduled drawings list for	1	2023-04-13
certificate	EMA21UKEX0050X		

5.20 CSA Zertifikat (HazLoc Zones)

Certificate of Compliance

Certificate: 70009819 Master Contract: 215040

Project: 80251074 Date Issued: 2025-05-05

 Issued to:
 Berthold Technologies GMBH
 Issued by:
 Jayaraj Balaraman

 & CO KG
 Jayaraj Balaraman

& CO KG Calmbacher Str 22 Bad Wildbad, Baden-Württemberg 75323

Germany

Attention: Juergen Betzelt

The products listed below are eligible to bear the CSA Mark shown with adjacent indicators 'C' and 'US' for Canada and US or with adjacent indicator 'US' for US only or without either indicator for Canada only.

PRODUCTS

Class 2258 02 PROCESS CONTROL EQUIPMENT - For Hazardous Locations

Class 2258 04 PROCESS CONTROL EQUIPMENT - Intrinsically Safe, Entity - For Hazardous Locations

Class 2258 82 PROCESS CONTROL EQUIPMENT - For Hazardous Locations - Certified to US Standards

 ${\it Class~2258~84~PROCESS~CONTROL~EQUIPMENT-Intrinsically~Safe,~Entity-For~Hazardous~Locations-Certified~to~US~Class~2258~84~PROCESS~CONTROL~EQUIPMENT-Intrinsically~Safe,~Entity-For~Hazardous~Locations-Certified~to~US~Class~2258~84~PROCESS~CONTROL~EQUIPMENT-Intrinsically~Safe,~Entity-For~Hazardous~Locations-Certified~to~US~Class~Control~Equipment-Intrinsically~Safe,~Entity-For~Hazardous~Locations-Certified~to~US~Class~Control~Equipment-Intrinsically~Safe,~Entity-For~Hazardous~Locations-Certified~to~US~Class~Control~Equipment-Intrinsically~Safe,~Entity-For~Hazardous~Locations-Certified~to~US~Class~Control~Equipment-Intrinsically~Cla$

Standards

Scintillation Counter

Model(s)

Model LB 480 ab-cd-.e-*

QD-1397 Rev 2019-04-30

© 2025 CSA Group. All rights reserved.

Class L. Zone 1 AEx db IIC T6 Gb

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C \leq T_a \leq +60 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- $c = \Lambda \text{Socket } x1; \text{Ex d (passive/slave)}$
 - B Socket x1; Ex d (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Zone 21 AEx th IIIC T75°C Db

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C \leq T_a \leq +60 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - $3-Version\,Ex$ (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- c = A Socket x1; Ex t (passive/slave)
 - B Socket x1; Ex t (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Class I, Zone 1 AEx db eb IIC T6 Gb

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C $\leq T_a \leq$ +65 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- c = 1 Socket x2; Ex d, Ex e (passive/slave)

QD-1397 Rev 2019-04-30

 $\hbox{@\,}2025$ CSA Group. All rights reserved.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

- 2 Socket x2; Ex d, Ex e (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)
- * May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Zone 21 AEx tb IIIC T80°C Db

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C $\leq T_{\rm a} \leq$ +65 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- c = 1 Socket x2; Ex t (passive/slave)
 - 2 Socket x2; Ex t (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Class I, Zone 1 AEx db eb IIC T5 Gb

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C \leq T_a \leq +80 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- c = 1 Socket x2; Ex d, Ex e (passive/active)
 - 2 Socket x2; Ex d, Ex e (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Zone 21 AEx tb IIIC T95°C Db

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C $\leq T_a \leq$ +80 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - $2-Version \ Ax \ (Point \ detectors \ with \ NaI \ scintillator \ for \ CrystalSENS \ detector)$
- b = Any alphanumeric character to signify sensor length and additional water cooling option.

OD-1397 Rev 2019-04-30

 $\hbox{@\,}2025$ CSA Group. All rights reserved.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

- c = 1 Socket x2; Ex t (passive/slave)
 - 2 Socket x2; Ex t (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)
- * May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Conditions of Acceptability:

- i. The interface circuit RS485 serves exclusively for intercommunication of the probes and must not be connected to an external RS485 circuit.
- ii. Repair of flameproof joints is not permitted. If repair is required, the equipment shall be returned to the manufacturer.
- iii. For 24Vdc models: This equipment may only be powered by a power supply unit with a limited energy electric circuit in accordance with CAN/CSA C22.2 No. 61010-1-12 and ANSI/UL 61010-1, or Class 2 as defined in the Canadian Electrical Code C22.1, Section 16-200 and/or National Electrical Code (NFPA 70), article 725.121.
- iv. When 3M Scotch-WeldTM DP 105 is used as a cement material, the maximum ambient temperature of the equipment shall be reduced to +60 °C.

Model(s)

Model LB 480 ab-cd-.e-*

Ex db IIC T6 Gb

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C \leq $T_{\rm a}$ \leq +60 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- c = A Socket x1; Ex d (passive/slave)
- B Socket x1; Ex d (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)
- * May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Ex th HIC T75°C Db

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C $\leq T_a \leq$ +60 °C, IP66/IP68, Type 4X

Where:

a = 1 - Version Bx (Rod detectors with plastic scintillator for UniSENS detector)

QD-1397 Rev 2019-04-30

 $\hbox{@\,}2025$ CSA Group. All rights reserved.

- 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
- 3 Version Ex (Detectors with glass window for SuperSENS)
- 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- c = A Socket x1; Ex t (passive/slave)
 - B Socket x1; Ex t (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)
- * May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Ex db eb IIC T6 Gb

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C $\leq T_{\rm a} \leq$ +65 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- c = 1 Socket x2; Ex d, Ex e (passive/slave)
 - 2 Socket x2; Ex d, Ex e (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Ex tb IIIC T80°C Db

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C $\leq T_a \leq$ +65 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - $4-Version \: Ex \: (Detectors \: with \: glass \: window \: for \: TowerSENS)$
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- c = 1 Socket x2; Ex t (passive/slave)
 - 2 Socket x2; Ex t (active)
- d = C Latest Ex-revision
- = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)
- * May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Ex db eb HC T5 Gb

OD-1397 Rev 2019-04-30

 $\hbox{@\,}2025$ CSA Group. All rights reserved.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Scintillation Counter. Model LB 480 ab-cd-.c-* -40 °C \leq T_a \leq +80 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- c = 1 Socket x2; Ex d, Ex e (passive/active)
 - 2 Socket x2; Ex d, Ex e (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VΛ)
- * May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Ex tb IIIC T95°C Db

Scintillation Counter. Model LB 480 ab-cd-.e-* -40 °C $\leq T_a \leq$ +80 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
- b = Any alphanumeric character to signify sensor length and additional water cooling option.
- = 1 Socket x2; Ex t (passive/slave)
 - 2 Socket x2; Ex t (active)
- d = C Latest Ex-revision
 - = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VΛ)
- * May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Conditions of Acceptability:

- i. The interface circuit RS485 serves exclusively for intercommunication of the probes and must not be connected to an external RS485 circuit.
- ii. Repair of flameproof joints is not permitted. If repair is required, the equipment shall be returned to the manufacturer.
- iii. For 24Vdc models: This equipment may only be powered by a power supply unit with a limited energy electric circuit in accordance with CAN/CSA C22.2 No. 61010-1-12 and ANSI/UL 61010-1, or Class 2 as defined in the Canadian Electrical Code C22.1, Section 16-200 and/or National Electrical Code (NFPA 70), article 725.121.
- iv. When 3M Scotch-WeldTM DP 105 is used as a cement material, the maximum ambient temperature of the equipment shall be reduced to +60 $^{\circ}$ C.

Model(s)

Model LB 480 ab-cd-.e-*

Ex db [ia Ga] HC T6 Gb

Scintillation Counter. Model LB 480 ab-cd-.e-*

QD-1397 Rev 2019-04-30

© 2025 CSA Group. All rights reserved.

Associated Intrinsically Safe wiring for EPL Ga, when connected per drawing 45190VP10. -40 °C \leq T_a \leq +50 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - $2-Version \ Ax$ (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify specifications and features
- c = C Socket x1; Ex d, Ex i (passive)
 - D Socket x1; Ex d, Ex i (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Ex tb [ia Da] IIIC T80°C Db

Scintillation Counter. Model LB 480 ab-cd-.e-*

Associated Intrinsically Safe wiring for EPL Da, when connected per drawing 45190VP10.

-40 °C $\leq T_{\rm a} \leq$ +50 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify specifications and features
- c = C Socket x1; Ex i, Ex t (passive)
 - D Socket x1; Ex i, Ex t (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Ex db eb [ia Ga] HC T6 Gb

Scintillation Counter. Model LB 480 ab-cd-.e-*

Associated Intrinsically Safe wiring for EPL Ga, when connected per drawing 45190VP10.

-40 °C ≤ T_a ≤ +50 °C, IP66/IP68, Type 4X

Where

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify specifications and features
- c = 3 Socket x2; Ex d, Ex e, Ex i (passive)

QD-1397 Rev 2019-04-30

 $\hbox{@\,}2025$ CSA Group. All rights reserved.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

- 4 Socket x2; Ex d, Ex e, Ex i (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)
- * May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Ex tb [ia Da] IIIC T80°C Db

Scintillation Counter. Model LB 480 ab-cd-.e-*

Associated Intrinsically Safe wiring for EPL Da, when connected per drawing 45190VP10.

-40 °C $\leq T_a \leq$ +50 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify specifications and features
- c = 3 Socket x2; Ex d, Ex i, Ex t (passive)
 - 4 Socket x2; Ex d, Ex i, Ex t (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Conditions of Acceptability:

- The probe must not be installed in zone 0 or zone 20.
 - The interface circuit RS485 serves exclusively for intercommunication of the probes and must not be connected to an external RS485 singuit.
 - Repair of flameproof joints is not permitted. If repair is required, the equipment shall be returned to the manufacturer.
 - For 24Vdc models: This equipment may only be powered by a power supply unit with a limited energy electric circuit in accordance with CAN/CSA C22.2 No. 61010-1-12 and ANSI/UL 61010-1, or Class 2 as defined in the Canadian Electrical Code C22.1, Section 16-200 and/or National Electrical Code (NFPA 70), article 725.121.
 - When 3M Scotch-WeldTM DP 105 is used as a cement material, the maximum ambient temperature of the equipment shall be reduced to +60 °C.

Entity Parameters:

Thermometer Circuit (PT100) (Terminal 15- and 16+)

Type of protection Intrinsic Safety Ex ia IIB/IIC/IIIC Maximum Values:

$U_0 = 14.0 \text{ V}$	$L_i = nil$
$I_0 = 27.7 \text{ mA}$	$C_i = 11 \text{ nF}$
$P_0 = 97.0 \text{ mW}$	
Linear	

Maximum permissible external values for common effective reactance's (C _i is not considered)							
L ₀ (mH)	IIB (IIIC)	IIC					

QD-1397 Rev 2019-04-30 © 2025 CSA Group. All rights reserved.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

	C ₀ (μF)	C ₀ (μF)
0.1	4.6	0.73
0.5	4.0	0.71
1.0	3.3	0.59

The RTD circuit is electrically connected to the internal supply circuit and the earth.

Open Collector Circuit (Terminal 11-, 12+)

Type of protection Intrinsic Safety Ex ia IIB/IIC/IIIC Maximum Values:

$U_i = 15.0 \text{ V}$	$L_i = nil$
$I_i = 26.6 \text{ mA}$	C _i = 11 nF
$P_i = 100.0 \text{ mW}$	
Linear	

The open collector circuit is safely electrically isolated from earth and all other circuits.

HART-current output (Source Mode) (Terminal 17/19-, 18/20+)

Type of protection Intrinsic Safety Ex ia IIB/IIC/IIIC Maximum Values:

$U_0 = 25.2 \text{ V}$	$L_i = 20.0 \ \mu H$	
$I_0 = 101.0 \text{ mA}$	$C_i = 3.0 \text{ nF}$	
$P_0 = 635.0 \text{ mW}$		
Linear		

Maximum permissible external values for common effective reactance's $(C_i$ is not considered)

L ₀ (mH)	IIB (IIIC)	IIC
	C ₀ (μF)	C ₀ (μF)
0.44	0.52	0.084
0.8	0.45	0.066
1.6	0.38	0.049
13.0	0.37	-

Single reactance's to table A.2 and figure A.4 or A.6 of 60079-11				
IIB IIC				
L ₀ (mH)	C ₀ (μF)	L ₀ (mH)	С ₀ (µF)	
17.0	0.820	4.0	0.107	

Or

HART-current output (Sink Mode) (Terminal 17/19+, 18/20-)

Type of protection Intrinsic Safety Ex ia IIB/IIC/IIIC Maximum Values:

$U_i = 30.0 \text{ V};$	$L_i = 20.0 \ \mu H$
$I_i = 152.0 \text{ mA}$	$C_i = 3.0 \text{ nF}$
$P_i = 1.14 \text{ W}$	
Linear	

QD-1397 Rev 2019-04-30 © 2025 CSA Group. All rights reserved. Page 9

*Note: the HART current output (source mode or sink mode) of the current output module are safely electrically isolated from earth and all other circuits.

Model(s)

Model LB 480 ab-cd-.e-*

Class I, Zone 1 AEx db [ia Ga] IIC T6 Gb

Scintillation Counter. Model LB 480 ab-cd-.e-*

Associated Intrinsically Safe wiring for EPL Ga, when connected per drawing 45190VP10.

-40 °C ≤ T_a ≤ +50 °C, IP66/IP68, Type 4X

Where

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify specifications and features
- c = C Socket x1; Ex d, Ex i (passive)
 - D Socket x1; Ex d, Ex i (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Zone 21 AEx tb [ia Da] IIIC T80°C Db

Scintillation Counter, Model LB 480 ab-cd-.e-*

Associated Intrinsically Safe wiring for EPL Da, when connected per drawing 45190VP10.

-40 °C $\leq T_a \leq$ +50 °C, IP66/IP68, Type 4X

Where

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - $3-Version \: Ex \: (Detectors \: with \: glass \: window \: for \: SuperSENS)$
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- Any alphanumeric character to signify specifications and features
- c = C Socket x1; Ex i, Ex t (passive)
 - D Socket x1; Ex i, Ex t (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Class I, Zone 1 AEx db eb [ia Ga] HC T6 Gb

Scintillation Counter. Model LB 480 ab-cd-.e-*

QD-1397 Rev 2019-04-30 © 2025 CSA Group. All rights reserved.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Associated Intrinsically Safe wiring for EPL Ga, when connected per drawing 45190VP10. -40 °C $\leq T_a \leq$ +50 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify specifications and features
- = 3 Socket x2; Ex d, Ex e, Ex i (passive)
 - 4 Socket x2; Ex d, Ex e, Ex i (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)
- * May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Zone 21 AEx tb [ia Da] IIIC T80°C Db

Scintillation Counter. Model LB 480 ab-cd-.e-*

Associated Intrinsically Safe wiring for EPL Da, when connected per drawing 45190VP10.

-40 °C $\leq T_a \leq$ +50 °C, IP66/IP68, Type 4X

Where:

- a = 1 Version Bx (Rod detectors with plastic scintillator for UniSENS detector)
 - 2 Version Ax (Point detectors with NaI scintillator for CrystalSENS detector)
 - 3 Version Ex (Detectors with glass window for SuperSENS)
 - 4 Version Ex (Detectors with glass window for TowerSENS)
- b = Any alphanumeric character to signify specifications and features
- c = 3 Socket x2; Ex d, Ex i, Ex t (passive)
 - 4 Socket x2; Ex d, Ex i, Ex t (active)
- d = C Latest Ex-revision
- e = 1 (rated 24Vdc, 12W)
 - 2 (rated 100Vac-240Vac, 50/60Hz, 12VA)

Conditions of Acceptability:

- The probe must not be installed in zone 0 or zone 20.
- The interface circuit RS485 serves exclusively for intercommunication of the probes and must not be connected to an external RS485 circuit.
- · Repair of flameproof joints is not permitted. If repair is required, the equipment shall be returned to the manufacturer.
- For 24Vdc models: This equipment may only be powered by a power supply unit with a limited energy electric circuit in accordance with CAN/CSA C22.2 No. 61010-1-12 and ANSI/UL 61010-1, or Class 2 as defined in the Canadian Electrical Code C22.1, Section 16-200 and/or National Electrical Code (NFPA 70), article 725.121.
- When 3M Scotch-WeldTM DP 105 is used as a cement material, the maximum ambient temperature of the equipment shall be reduced to +60 °C.

Entity Parameters:

QD-1397 Rev 2019-04-30

© 2025 CSA Group. All rights reserved.

^{*} May be followed by additional alphanumeric digits, specifying features that are not relevant to certification.

Thermometer Circuit (PT100) (Terminal 15- and 16+)

Type of protection Intrinsic Safety Ex ia IIB/IIC/IIIC Maximum Values:

•	
$U_0 = 14.0 \text{ V}$	L _i = nil
$I_0 = 27.7 \text{ mA}$	$C_i = 11 \text{ nF}$
$P_0 = 97.0 \text{ mW}$	
Linear	

Maximum permissible external values for common effective reactance's (C _i is not considered)			
L ₀ (mH) IIB (IIIC) IIC			
	C ₀ (μF)	C ₀ (μF)	
0.1	4.6	0.73	
0.5	4.0	0.71	
1.0	3.3	0.59	

The RTD circuit is electrically connected to the internal supply circuit and the earth.

Open Collector Circuit (Terminal 11-, 12+)

Type of protection Intrinsic Safety Ex ia IIB/IIC/IIIC Maximum Values:

$U_i = 15.0 \text{ V}$	L _i = nil
$I_1 = 26.6 \text{ mA}$	$C_i = 11 \text{ nF}$
$P_i = 100.0 \text{ mW}$	
Linear	

The open collector circuit is safely electrically isolated from earth and all other circuits.

HART-current output (Source Mode) (Terminal 17/19-, 18/20+)

Type of protection Intrinsic Safety Ex ia IIB/IIC/IIIC Maximum Values:

$U_0 = 25.2 \text{ V}$	$L_i = 20.0 \ \mu H$	
$I_0 = 101.0 \text{ mA}$	$C_i = 3.0 \text{ nF}$	
$P_0 = 635.0 \text{ mW}$		
Linear		

Maximum permissible external values for common effective reactance's (Ci is not considered)

Maximum permissible external values for common effective reactance's (C _i is not considered)		
L ₀ (mH)	IIB (IIIC)	ПС
	C ₀ (μF)	C ₀ (μF)
0.44	0.52	0.084
0.8	0.45	0.066
1.6	0.38	0.049
13.0	0.37	-

Single reactance's to table A2 and figure A4 or A6 of 60079-11			
IIB IIC			
L ₀ (mH)	Со (µF)	L ₀ (mH) C ₀ (μF)	
17.0	0.820	4.0	0.107

Or

HART-current output (Sink Mode) (Terminal 17/19+, 18/20-)

Type of protection Intrinsic Safety Ex ia IIB/IIC/IIIC Maximum Values:

U _i = 30.0 V;	$L_i = 20.0 \ \mu H$
$I_i = 152.0 \text{ mA}$	$C_i = 3.0 \text{ nF}$
$P_i = 1.14 \text{ W}$	
Linear	

^{*}Note: the HART current output (source mode or sink mode) of the current output module are safely electrically isolated from earth and all other circuits.

APPLICABLE REQUIREMENTS

CSA C22.2 No. 94.2:15 - Second Edition - Enclosures for electrical equipment, environmental considerations

CSA C22.2 No. 61010-1-12, UPD1:2015, UPD2:2016 AMD1:2018 - Safety requirements for electrical equipment for measurement, control, and laboratory use — Part 1: General requirements...

CSA C22.2 No. 60079-0:19 - Fourth Edition - Explosive atmospheres — Part 0: Equipment — General requirements

CSA C22.2 No. 60079-1:16 - Third Edition - Explosive atmospheres - Part 1: Equipment protection by flameproof enclosures "d"

CAN/CSA-C22.2 No. 60079-7:16 - National Standard of Canada Norme nationale du Canada (reaffirmed/confirmée en 2021)

CAN/CSA C22.2 No 60079-31:15 - Second Edition - Explosive atmospheres — Part 31: Equipment dust ignition protection by enclosure "t"

ANSI/UL 60079-0 (Seventh Edition) - UL Standard for Explosive Atmospheres - Part 0: Equipment - General Requirements

ANSI/UL 60079-7 (Fifth Edition) - UL Standard for Safety Explosive Atmospheres - Part 7: Equipment protection by increased safety "e" - Fifth Edition

ANSI/UL 60079-11 (Sixth Edition) - UL Standard for Safety Explosive Atmospheres — Part 11: Equipment Protection by Intrinsic Safety "i"

CAN/CSA-C22.2 No. 60079-11:14 (R2018) - Explosive Atmospheres - Part 11: Equipment protection by intrinsic safety "i"

ANSI/UL 61010-1 3rd Edition (2012), AMD1:2018 - Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use - Part 1: General Requirements

UL 50E (Second Ed.) - UL 50E (Second Ed.) - UL STANDARD FOR SAFETY Enclosures for Electrical Equipment, Environmental Considerations

UL 60079-1:15 (Seventh Edition) - Explosive atmospheres - Part 1: Equipment protection by flameproof enclosures 'd'

UL 60079-31:2015 - Second Edition - Standard for Safety Explosive Atmospheres - Part 31: Equipment Dust Ignition Protection by Enclosure 't'

OD-1397 Rev 2019-04-30

 $\hbox{@\,}2025$ CSA Group. All rights reserved.

Notes:

Products certified under Class(es) C225802, C225804, C225882, C225884 have been certified under CSA's ISO/IEC 17065 accreditation with the Standards Council of Canada (SCC). www.scc.ca

QD-1397 Rev 2019-04-30

 $\ensuremath{\mathbb{C}}$ 2025 CSA Group. All rights reserved.

Supplement to Certificate of Compliance

Certificate: 70009819 Master Contract: 215040

The products listed, including the latest revision described below, are eligible to be marked in accordance with the referenced Certificate.

Product Certification History

Project	Date	Description
80251074	2025-05-05	Update to report 70009819 to update the descriptive drawings $45190GZ10$, $45190AP5$ and $45190GZ8$.
80202636	2024-05-20	Update Report 70009819 to introduce changes to the Power Supply 53062/53063 and update of drawings in the Descriptive Documents List.
80160833	2023-04-25	Update to Report 70009819 to introduce the following changes: i. Add additional compounds in drawing 45190GZ6. ii. Modification drawing 45190GZ10 by adding additional adhesive label material and change of nameplate layout.
80137855	2023-03-02	Update to Report 70009819 to revise the contact pinning of RS485 interface, the groove diameter of a sealing fixture fitted to the equipment & corrections to the descriptive documents listed.
80065116	2021-09-27	Update to Report 70009819 for flameproof, increased safety, intrinsically safe, and dust ignition protection by enclosure protected Model LB 480 series sensors for revision of descriptive documents evaluated in latest versions of PTB IECEx ExTRs. National differences of 60079 series standards to be addressed.
70066628	2016-03-07	Update to Report 70009819 to include drawing revisions 46032SP $\#09$ and 46031 $\#08$ and correction to entity parameters.
70009819	2015-11-25	Original cCSAus Certification for Scintillation Measuring Equipment, Model Series LB 480, for C1Z1, Ex d e [ia] T-Code T1-T6, and Class II, Zone 21 based upon IECEx Certification.

© 2025 CSA Group. All rights reserved.

- 5.21 FM Zertifikate (HazLoc Division)
- 5.21.1 US Certificate Of Conformity No: FM16US0282X

CERTIFICATE OF CONFORMITY

1. HAZARDOUS (CLASSIFIED) LOCATION ELECTRICAL EQUIPMENT PER US REQUIREMENTS

2. Certificate No: FM16US0282X

3. Equipment: LB 480 Series Scintillation Measurement Equipment (Type Reference and Name)

4. Name of Listing Company: Berthold Technologies GmbH & Co. KG

Address of Listing Company: Calmbacher Strasse 22 75323 Bad Wildbad Germany

6. The examination and test results are recorded in confidential report number:

3054263 dated 22nd September 2016

 FM Approvals LLC, certifies that the equipment described has been found to comply with the following Approval standards and other documents:

> Class 3600:2022, Class 3615:2022, Class 3616:2022, Class 3810:2005, ANSI/NEMA 250:1991

- 8. If the sign 'X' is placed after the certificate number, it indicates that the equipment is subject to specific conditions of use specified in the schedule to this certificate.
- 9. This certificate relates to the design, examination and testing of the products specified herein. The FM Approvals surveillance audit program has further determined that the manufacturing processes and quality control procedures in place are satisfactory to manufacture the product as examined, tested and Approved.
- 10. Equipment Ratings:

Explosion proof for Class I, Division 1, Groups A, B, C and D; Dust-ignition proof for Class II, Division 1, Groups E, F and G; and Class III, Division 1 hazardous (classified) locations, indoors and outdoors (Type 4X) with an ambient temperature rating of -40° C to $+65^{\circ}$ C (or $+80^{\circ}$ C).

Certificate issued by:

oci illicate issued by

J. E. Marquedant

VP, Manager - Electrical Systems

Marquedia

FM Approvals

18 January 2023

Date

To verify the availability of the Approved product, please refer to www.approvalguide.com

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

S CPS

F 347 (Apr 21)

Page 1 of 3

SCHEDULE

US Certificate Of Conformity No: FM16US0282X

11. The marking of the equipment shall include:

Class I Division 1, Groups A, B, C, D

Class II, III, Division 1, Groups E, F, G

T6, Ta = -40° C to +65

T5, Ta = -40°C to +80°C

Type 4X

12. Description of Equipment:

General - The LB 480 Series Scintillation Measurement Equipment is used as part of a measuring system for monitoring industrial processes. The equipment is used for continuously measuring the level or weight per unit area, in tanks or bins, of liquid, granular, viscous or encrustation-forming media and for measuring conveyor belt charges as well as the density of liquids, suspensions, slurries and bulk solids. The measurement principle is based on the absorption of gamma rays. The radiation source is not part of the measuring equipment and is not included in the product Approval.

Construction - The LB 480 Series Scintillation Measurement Equipment consists of a scintillation detector with associated electronics in an explosionproof/dust-ignitionproof enclosure with separate sensor and wiring compartments. The sensor and wiring compartments are separated by NRTL listed cemented feedthroughs. The sensor and housing (socket) are constructed of 304 or 316 stainless steel. The wiring compartment contains four ½-inch NPT entries and contains a threaded cover. The socket attaches to the sensor by cylindrical joint fastened with six bolts. The bolt holes terminate under the threaded cover inside the wiring compartment) and therefore contain six threaded plugs to form a valid flamepath. The equipment is available with an optional window which is cemented into the sensor.

Ratings - The equipment is rated for use in an ambient temperature of -40°C to +65°C (or +80°C). The equipment operates at 100-240 Vac (12 VA) or 24 Vdc (12 W).

LB 480-a-bA-cd-xe-0x0-x. Scintillation Measurement Equipment.

- a = Sensor: 11, 12, 13, 14, 15, 16, 2A, 2B, 2E, 2F, 2I, 2J, 2K, 2L, 31, 32, 41, 42, 43 or 44.
- b = Approval: F or G.
- c = Signal output: 0, 1 or 2.
- d = Power supply: 1 or 2.
- e = Housing material: 1 or 3.
- x = Options not affecting the equipment safety.

13. Specific Conditions of Use:

The ambient temperature range and T-code rating for the equipment is as follows:

Ambient Temperature	T-Code
-40°C to +65°C	T6
-40°C to +80°C	T5

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 347 (Apr 21) Page 2 of 3

SCHEDULE

Member of the FM Global Group

US Certificate Of Conformity No: FM16US0282X

14. Test and Assessment Procedure and Conditions:

This Certificate has been issued in accordance with FM Approvals US Certification Requirements.

15. Schedule Drawings

A copy of the technical documentation has been kept by FM Approvals.

16. Certificate History

Details of the supplements to this certificate are described below:

Date	Description
22 nd September 2016	Original Issue.
3rd August 2022	Supplement 1: Report Reference: RR233804 dated 3 rd August 2022. Description of the Change: Minor documentation changes not affecting the equipment safety. Minor model code changes to add alternate terminal configuration and to remove variables with no influence on the protection method. Class 3600, 3615 and 3616 updated to the latest versions as changes between editions are non-technical.
18 th January 2023	Supplement 2: Report Reference: PR460854 dated 18 th January 2023. Description of the Change: Testing and examination of an alternate window cement material.

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com www.fmapprovals.com

F 347 (Apr 21) Page 3 of 3

5.21.2 Canadian Certificate Of Conformity No: FM16CA0144X

CERTIFICATE OF CONFORMITY

1. HAZARDOUS LOCATION ELECTRICAL EQUIPMENT PER CANADIAN REQUIREMENTS

2. Certificate No:

FM16CA0144X

3. Equipment: (Type Reference and Name)

LB 480 Series Scintillation Measurement Equipment

4. Name of Listing Company:

Berthold Technologies GmbH & Co. KG

5. Address of Listing Company:

Calmbacher Strasse 22 75323 Bad Wildbad Germany

The examination and test results are recorded in confidential report numbers

3054263 dated 22nd September 2016

7. FM Approvals LLC, certifies that the equipment described has been found to comply with the following Approval standards and other documents:

CAN/CSA-C22.2 No. 0.4:R2013, CSA-C22.2 No. 0.5:2016, CSA-C22.2 No. 25:R2014, CSA-C22.2 No. 30:R2016, CAN/CSA-C22.2 No. 94:R2011, CAN/CSA-C22.2 No. 61010-1-12:2012

- 8. If the sign 'X' is placed after the certificate number, it indicates that the equipment is subject to specific conditions of use specified in the schedule to this certificate.
- 9. This certificate relates to the design, examination and testing of the products specified herein. The FM Approvals surveillance audit program has further determined that the manufacturing processes and quality control procedures in place are satisfactory to manufacture the product as examined, tested and Approved.
- 10. Equipment Ratings:

Explosion proof for Class I, Division 1, Groups B, C and D; Dust-ignition proof for Class II, Division 1, Groups E, F and G; and Class III, Division 1 hazardous locations, indoors and outdoors (Type 4X) with an ambient temperature rating of -40°C to +65°C (or +80°C).

Certificate issued by:

18 January 2023

Date

JLE. Marquedant

VP, Manager - Electrical Systems

To verify the availability of the Approved product, please refer to $\underline{\text{www.approval} \text{quide.com}}$

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com <a href="mai

COS-RIS

F 348 (Apr 21)

Page 1 of 3

SCHEDULE

Canadian Certificate Of Conformity No: FM16CA0144X

11. The marking of the equipment shall include:

Class I Division 1, Groups B, C, D
Class II, III, Division 1, Groups E, F, G

T6, Ta = -40°C to +65

T5, Ta = -40°C to +80°C

Type 4X

12. Description of Equipment:

General - The LB 480 Series Scintillation Measurement Equipment is used as part of a measuring system for monitoring industrial processes. The equipment is used for continuously measuring the level or weight per unit area, in tanks or bins, of liquid, granular, viscous or encrustation-forming media and for measuring conveyor belt charges as well as the density of liquids, suspensions, slurries and bulk solids. The measurement principle is based on the absorption of gamma rays. The radiation source is not part of the measuring equipment and is not included in the product Approval.

Construction - The LB 480 Series Scintillation Measurement Equipment consists of a scintillation detector with associated electronics in an explosionproof/dust-ignitionproof enclosure with separate sensor and wiring compartments. The sensor and wiring compartments are separated by NRTL listed cemented feedthroughs. The sensor and housing (socket) are constructed of 304 or 316 stainless steel. The wiring compartment contains four ½-inch NPT entries and contains a threaded cover. The socket attaches to the sensor by cylindrical joint fastened with six bolts. The bolt holes terminate under the threaded cover inside the wiring compartment) and therefore contain six threaded plugs to form a valid flamepath. The equipment is available with an optional window which is cemented into the sensor.

Ratings - The equipment is rated for use in an ambient temperature of -40°C to +65°C (or +80°C). The equipment operates at 100-240 Vac (12 VA) or 24 Vdc (12 W).

LB 480-a-bA-cd-xe-0x0-x. Scintillation Measurement Equipment.

a = Sensor: 11, 12, 13, 14, 15, 16, 2A, 2B, 2E, 2F, 2I, 2J, 2K, 2L, 31, 32, 41, 42, 43 or 44.

b = Approval: F or G.

c = Signal output: 0, 1 or 2.

d = Power supply: 1 or 2.

e = Housing material: 1 or 3.

x = Options not affecting the equipment safety.

13. Specific Conditions of Use:

The ambient temperature range and T-code rating for the equipment is as follows:

Ambient Temperature	T-Code
-40°C to +65°C	T6
-40°C to +80°C	T5

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA T:+1 (1) 781 762 4300 F:+1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com <a href="mailt

F 348 (Apr 21) Page 2 of 3

SCHEDULE

Member of the FM Global Group

Canadian Certificate Of Conformity No: FM16CA0144X

14. Test and Assessment Procedure and Conditions:

This Certificate has been issued in accordance with FM Approvals Canadian Certification Scheme.

15. Schedule Drawings

A copy of the technical documentation has been kept by FM Approvals.

16. Certificate History

Details of the supplements to this certificate are described below:

Date	Description
22 nd September 2016	Original Issue.
3 rd August 2022	Supplement 1: Report Reference: RR233804 dated 3 rd August 2022. Description of the Change: Minor documentation changes not affecting the equipment safety. Minor model code changes to add alternate terminal configuration and to remove variables with no influence on the protection method. C22.2 No. 30 updated to the latest reaffirmed date.
18 th January 2023	Supplement 2: Report Reference: PR460854 dated 18th January 2023. Description of the Change: Testing and examination of an alternate window cement material.

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC. 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 348 (Apr 21) Page 3 of 3

5.22 Inmetro Zertifikat – IEX 19.0182X

CERTIFICADO DE CONFORMIDADE

Certificate of Conformity

N°: IEx 19.0182X

Página / Page: 1/5

Data de Emissão: 06/01/2020

Data de Validade: 05/01/2029 Validity date

Revisão / Revision

Nº: 2

Data: 06/01/2023

roduto

UNIDADE DE MEDIÇÃO DE CINTILAÇÃO SCINTILLATION MEASURING UNIT

olicitante / Endereço:

BERTHOLD TECHNOLOGIES GmbH & Co. KG

Calmbacher Street 22 75323 - Bad Wildbad - Germany

abricante / Endereço:

BERTHOLD TECHNOLOGIES GmbH & Co. KG

Calmbacher Street 22

75323 - Bad Wildbad - Germany

Jnidade (s) Fabril (is) / Endereço:

BERTHOLD TECHNOLOGIES GmbH & Co. KG

Calmbacher Street 22

75323 - Bad Wildbad - Germany

Modelo:

Características Principais:

Ver Descrição do Produto / See Product Description

Marca / Código de barras:

BERTHOLD

N/A

LB 480

amília de Produto:

Unidade de medição de cintilação para uso em atmosferas explosivas Scintillation measuring unit for use in explosive atmospheres

Número de Série / Lote:

Ver Descrição do Produto / See Product Description

lormas Aplicáveis:

Marcação:

ABNT NBR IEC 60079-0:2020 (corrigida 2022), ABNT NBR IEC 60079-1:2016 (corrigida 2020, ABNT NBR IEC 60079-7:2018 (corrigida 2022), ABNT NBR IEC 60079-1:2013 (corrigida 2017) &

ABNT NBR IEC 60079-31:2022

Modelo de Certificação:

Modelo 5, segundo ABNT NBR ISO/IEC 17067:2015 / Model 5

ortaria Inmetro Nº / Escopo:

115:2022 / Equipamentos Elétricos para Atmosferas Explosivas / Electrical Equipment for

Concessão para:

Uso do Selo de Identificação da Conformidade sobre o (s) produto (s) relacionado (s) neste Certificado / Use of the conformity identification seal on the product (s) listed in this certificate

A Associação IEx Certificações, que é um Organismo de Certificação de Produto acreditado pela Coordenação Geral de Acreditação – Cgcre sob o registro N° OCP-0064, confirma que o produto está em conformidade com a (s) Norma (s) e Portaria acima descritas.

Associação IEx Certificações, as a Product Certification Body accredited by Coordenação Geral de Acreditação – Cgcre, according to the register N° OCP-0064, confirms that the product (s) is (are) in compliance with the standards and Decree above mentioned.

MARCO ANTONIO BUCCIARELLI POLITE GALTO STABLE POLITE GALTO STABLE STABLE POLITE GALTO STABLE STABLE

Este Certificado de Conformidade é válido somente acompanhado das páginas de 1 a 5 e somente pode ser reproduzido em sua totalidade e sem qualquer alteração.

This Certificate of Conformity is valid accompanied by pages 1 to 5 only and could be reproduced completely without any change only.

MABRoque

Associação IEx Certificações (CNPJ: 12.845.838/0001-65) ASSOCIAÇÃO IEX Certilinações (CNT 3. 12.043.056.0561 5.) Alameda Tocantins, 75 sala 609 Barueri SP CEP 06455-020 Brasil Tel +55 11 4195-0705 contato@iexcert.org.br

IEx-FR-005, Rev.12, 21/11/2017

CERTIFICADO DE CONFORMIDADE

Certificate of Conformity

N°: IEx 19.0182X Página / Page: 2/5 Data de Emissão: 06/01/2020

ssuing date

N°: 2

Data de Validade: 05/01/2029

Revisão / Revision

Data: 06/01/2023

Representante Legal / Endereço: Legal Representative / Address INSTRUMENTOS LINCE LIMITADA

Rua Luiz Ferreira, 84

21042-210 - Rio de Janeiro - RJ - Brasil

CNPJ: 29.359.171/0001-93

Marca	Modelo	Descrição do produto	Código de Barras
Trade mark	Model	Product descripition	Bar Code
BERTHOLD	LB 480	Unidade de medição de cintilação para uso em atmosferas explosivas para o monitoramento de processos industriais. U_N = 15 V ; P = 5 W	N/A

Descrição do Produto I Product Description

A unidade de medição de cintilação da série LB 480 faz parte de um sistema de medição para monitoramento de processos industriais. É utilizado para medir continuamente o nível de tanques ou silos que contenham meios líquidos, granulares, viscosos ou formadores de incrustações, ou para medir as cargas da correia transportadora, a densidade de líquidos, suspensões, lamas e sólidos a granel.

A unidade consiste em um detector de cintilação com os componentes eletrônicos de análise necessários, que estão alojados em invólucro à prova de explosão.

A unidade de medição de cintilação da série LB 480 é estendida a versões de aparelhos elétricos associados para os sinais de saídas da entrada OC, PT100 e saída de corrente HART no tipo de proteção segurança intrínseca "i".

A fonte de alimentação e a interface RS485 foram projetadas como não intrinsecamente seguras.

A relação entre variação, tipo de proteção, classe de temperatura e temperatura ambiente é recodificada e está listada na tabela abaixo.

The scintillation measuring equipment series LB 480 is part of a measuring system for monitoring industrial processes. It is used for continuous measurement of the level in tanks or bins that contain liquid, granular, viscous or encrustation-forming media, and for measuring conveyor belt charges, as well as the density of liquids, suspensions, slurries and bulk solids.

The scintillation measuring equipment consists of a scintillation detector with associated electronics in a common housing in type of protection Flameproof Enclosure.
The series LB 480 of scintillation measuring equipment is extended to versions of associated electrical apparatus for the signal outputs OC-input, PT100 and HART current output in type of protection Intrinsic Safety "i".

The power supply and the interface RS485 are designed as non-intrinsically safe.

The relationship between variation, type of protection, temperature class and ambient temperature is re-codified and is listed in the table below.

ACESSÓRIOS E OPCIONAIS / ACCESSORIES AND OPTIONALS:

Proteção Protection	Classe de Temperatura Temperature Class	Variação <i>Variant</i>	Código Type Code	Temperatura Ambiente Ambient Temperature
Ex db IIC Gb	T6	A1, B1, E1	LB 480-xx-AC-xx	-40 °C ≤ Ta ≤ +60 °C
Ex tb IIIC Db	T75 °C	AI, BI, EI	LB 480-xx-BC-xx	-40 C S 1a S +60 C
Ex db eb IIC Gb	Т6	42 P2 F2	LB 480-xx-1C-xx	-40 °C ≤ Ta ≤ +65 °C
Ex tb IIIC Db	T80 °C	A2, B2, E2	LB 480-xx-2C-xx	-40 CS 1a S +65 C
			LB 480-1x-1C-xx	
Ex db eb IIC Gb	T5	A2, B2	LB 480-1x-2C-xx	-40 °C ≤ Ta ≤ +80 °C
Ex tb IIIC Db	T95 °C	A2, B2	LB 480-2x-1C-xx	-40 CS1aS+60 C
			LB 480-2x-2C-xx	
Ex db [ia Ga] IIC Gb	T6	A1, B1, E1	LB 480-xx-CC-xx	-40 °C ≤ Ta ≤ +50 °C
Ex tb [ia Da] IIIC Db	T80 °C	AI, BI, EI	LB 480-xx-DC-xx	-40 C S 18 S +50 C
Ex db eb [ia Ga] IIC Gb	Т6	42 P2 F2	LB 480-xx-3C-xx	40 °C < T- < 150 °C
Ex tb [ia Da] IIIC Db	T80 °C	A2, B2, E2	LB 480-xx-4C-xx	-40 °C ≤ Ta ≤ +50 °C

Este Certificado de Conformidade é válido somente acompanhado das páginas de 1 a 5 e somente pode ser reproduzido em sua totalidade e sem qualquer alteração.

This Certificate of Conformity is valid accompanied by pages 1 to 5 only and could be reproduced completely without any change only.

Associação IEx Certificações (CNPJ: 12.845.838/0001-65) Alameda Tocantins, 75 sala 609 Barueri SP CEP 06455-020 Brasil Tel +55 11 4195-0705 contato@iexcert.org.br

IEx-FR-005, Rev.12, 21/11/2017

CERTIFICADO DE CONFORMIDADE

Certificate of Conformity

N°: IEx 19.0182X Página / Page: 3/5

Data de Emissão: 06/01/2020 Issuing date

Data de Validade: 05/01/2029

Revisão / Revision

N°: 2 Data: 06/01/2023

Alimentação / Power supply		max. 240 V, 50/60 Hz,	max. 12 VA: ou/or		
(Terminal 1, 2)		max. 24 V (cc/dc), max.			
(Terminal 3, 4)		Um = 250 V	500000 300000		
RS485 Interface circuit Terminal 5, 6)		5 V (cc/dc), 20 mA	com circuitos do int	orfoco DC195 do	outros instrumentos de
Terrimar 5, 0)		cintilação LB 480	com circuitos de ini	enace No405 de	outios ilistramentos de
		Only for connection to RS4	85 interface circuits of	other scintillation in	struments LB 480
DT400) T		T	UD/UO / / /		
PT100) Thermometer circuit Terminal 15, 16)		Tipo de proteção Ex ia Valores máximos / Max		on Intrinsic Safety	
16 minut 10, 10)		$U_0 = 14 \text{ V}; I_0 = 27.7 \text{ mA}$		1 nF; L _i = despre	zível / negligible
			5 (5) (0)		
			imos admissíveis pa	ara reatâncias efe	tivas comuns (Ci não é
		considerado).	ternal values for comm	on effective reactar	nces (Ci is not considered).
		L _o (mH)	IIB	on encouve reactar.	IIC
		,	Co (µF)	Co (μF)
		0.1	4.6		0.73
		0.5	4.0		0.71 0.59
		1.0	3.3		0.59
circuito RTD é eletricamente conectado			ção e ao terra.		
he RTD circuit is electrically connected to the in	nternai	supply circuit and the earth			
ircuito coletor aberto / Open collector circui	it	Tipo de proteção Ex ia	IIB/IIC type of protection	on Intrinsic Safety	
Terminal 11, 12)	"	Valores máximos / Max		on mamore ourory	
	- 1			4 - 1	Third I negligible
	- 1	$U_i = 15 \text{ V}, I_i = 26.6 \text{ mA},$	$P_i = 100 \text{ mW}; C_i = 1$	1 nF; L_i = despre	Zivei i negligible
D circuito coletor aberto é isolado eletrica	mente	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 15 15 15 15 15 15 15 15 15 15 15 15 15	1 nF; L _i = despre	Zivei i negligible
		do terra e de todos os ou	itros circuitos	1 nF; L _i = despre	Zivei / negligible
The open collector circuit is safely electrically iso		do terra e de todos os ou rom earth and all other circui	itros circuitos		ZIVELT Hegligible
The open collector circuit is safely electrically iso		do terra e de todos os ou rom earth and all other circui Tipo de proteção Ex ia	itros circuitos ts		ZIVEI / Heghgible
The open collector circuit is safely electrically iso		ot terra e de todos os ou rom earth and all other circui Tipo de proteção Ex ia Valores máximos / Max	itros circuitos ts IIB/IIC type of protection imum values:	on Intrinsic Safety	
O circuito coletor aberto é isolado eletricar The open collector circuit is safely electrically iso Saída de corrente HART-current output (Source Mode) (Terminal 17, 18)		ot terra e de todos os ou rom earth and all other circui Tipo de proteção Ex ia Valores máximos / Max U _o = 25.2 V; I _o = 101 m.	itros circuitos is IIB/IIC type of protection imum values: A; P _o = 635 mW; C _i :	on Intrinsic Safety = 3 nF; L _i = 20 µH	1
The open collector circuit is safely electrically iso		ot terra e de todos os ou rom earth and all other circui Tipo de proteção Ex ia Valores máximos / Max U _o = 25.2 V; I _o = 101 m. Valores externos máx	itros circuitos is IIB/IIC type of protection imum values: A; P _o = 635 mW; C _i :	on Intrinsic Safety = 3 nF; L _i = 20 µH	
The open collector circuit is safely electrically iso		do terra e de todos os ou rom earth and all other circuii Tipo de proteção Ex ia Valores máximos / Max U _o = 25.2 V; I _o = 101 m. Valores externos máx considerado).	Itros circuitos IIB/IIC type of protection imum values: A; P _o = 635 mW; C _i = imos admissíveis pa	on Intrinsic Safety = 3 nF; L _i = 20 μH ara reatâncias efe	1
The open collector circuit is safely electrically iso		do terra e de todos os ou rom earth and all other circuii Tipo de proteção Ex ia Valores máximos / Max U _o = 25.2 V; I _o = 101 m. Valores externos máx considerado).	IIB/IIC type of protection A; Po = 635 mW; C ₁ : imos admissíveis pa ternal values for comm IIB	on Intrinsic Safety = 3 nF; L _i = 20 µHara reatâncias efe	tivas comuns (Ci não é noes (Ci is not considered). IIC
The open collector circuit is safely electrically iso		Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m Valores externos máx considerado). Maximum permissible ex Lo (mH)	IIB/IIC type of protection A; P _o = 635 mW; C _i : imos admissíveis patternal values for comm IIB Co (µl	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar.	H etivas comuns (Ci não é nces (Ci is not considered). ΠC Co (μF)
The open collector circuit is safely electrically iso		Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH)	IIB/IIC type of protection A; Po = 635 mW; Ci : imos admissíveis pa ternal values for comm IIB Co (µI 0.52	on Intrinsic Safety = 3 nF; L _i = 20 μH ara reatâncias efe on effective reactar.	H etivas comuns (Ci não é nces (Ci is not considered). ΠC Co (μF) 0.084
The open collector circuit is safely electrically iso		do terra e de todos os ou com earth and all other circui. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8	IIIB/IIC type of protection IIIIB/IIC type of protection IIIIB/IIC type of protection IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar.	Hetivas comuns (Ci não é noes (Ci is not considered). IIC Co (µF) 0.084 0.066
The open collector circuit is safely electrically iso		Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH)	IIB/IIC type of protection A; Po = 635 mW; Ci = imos admissíveis pa ternal values for comm IIB Co (µI 0.52 0.45 0.38	on Intrinsic Safety = 3 nF; L _i = 20 µF ara reatâncias efe	H etivas comuns (Ci não é nces (Ci is not considered). ΠC Co (μF) 0.084
The open collector circuit is safely electrically iso		do terra e de todos os ou com earth and ali other circuii Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6	IIIB/IIC type of protection IIIIB/IIC type of protection IIIIB/IIC type of protection IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	on Intrinsic Safety = 3 nF; L _i = 20 µF ara reatâncias efe	Hetivas comuns (Ci não é loces (Ci is not considered). IIC Co (µF) 0.084 0.066 0.049
The open collector circuit is safely electrically iso		Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p.	IIB/IIC type of protection A; P _o = 635 mW; C _i : imos admissíveis paternal values for comm IIB Co (µi 0.52 0.45 0.38 0.37	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar. F)	Hetivas comuns (Ci não é noes (Ci is not considered). IIC Co (μF) 0.084 0.066 0.049 - a NBR IEC 60079-11
The open collector circuit is safely electrically iso		do terra e de todos os ou com earth and all other circui. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p. Single reactances to tabli	IIB/IIC type of protection A; P _o = 635 mW; C _i : imos admissíveis paternal values for comm IIB Co (µi 0.52 0.45 0.38 0.37	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar. F)	Hetivas comuns (Ci não é noes (Ci is not considered). IIC Co (µF) 0.084 0.066 0.049 a NBR IEC 60079-11
The open collector circuit is safely electrically iso		do terra e de todos os ou com earth and all other circui. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p. Single reactances to table	IIIB/IIC type of protection was values: A; P _o = 635 mW; C _i = imos admissíveis paternal values for comm IIB Co (µi 0.52 0.45 0.38 0.37 ara a tabela A.2 e fige A.2 and figure A.4 or	on Intrinsic Safety = 3 nF; L _i = 20 µF ara reatâncias efe on effective reactar. F) gura A.4 ou A.6 d A.6 of IEC 60079-1	Hetivas comuns (Ci não é noes (Ci is not considered). IIC Co (µF) 0.084 0.066 0.049
The open collector circuit is safely electrically iso		do terra e de todos os ou com earth and ali other circuir. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p. Single reactances to table IIB Lo (mH)	IIB/IIC type of protection was values: A; Po = 635 mW; Ci = imos admissíveis parternal values for comm IIB Co (µI 0.52 0.45 0.38 0.37 ara a tabela A.2 e fige e A.2 and figure A.4 or Co (µF)	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar. F) gura A.4 ou A.6 d A.6 of IEC 60079-1 L _o (mH)	Hetivas comuns (Ci não é noes (Ci is not considered). IIC Co (μF) 0.084 0.066 0.049 - a NBR IEC 60079-11 IIC C₀ (μF)
he open collector circuit is safely electrically isc aída de corrente HART-current output		do terra e de todos os ou com earth and all other circui. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p. Single reactances to table	IIIB/IIC type of protection was values: A; P _o = 635 mW; C _i = imos admissíveis paternal values for comm IIB Co (µi 0.52 0.45 0.38 0.37 ara a tabela A.2 e fige A.2 and figure A.4 or	on Intrinsic Safety = 3 nF; L _i = 20 µF ara reatâncias efe on effective reactar. F) gura A.4 ou A.6 d A.6 of IEC 60079-1	Hetivas comuns (Ci não é noes (Ci is not considered). IIC Co (µF) 0.084 0.066 0.049
the open collector circuit is safely electrically iso saída de corrente HART-current output Source Mode) (Terminal 17, 18)		do terra e de todos os ou com earth and ali other circuir. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p. Single reactances to table IIB Lo (mH)	IIB/IIC type of protection was values: A; Po = 635 mW; Ci = imos admissíveis parternal values for comm IIB Co (µI 0.52 0.45 0.38 0.37 ara a tabela A.2 e fige A.2 and figure A.4 or Co (µF) 0.820	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar. F) gura A.4 ou A.6 d A.6 of IEC 60079-1 L _o (mH) 4	Hetivas comuns (Ci não é noes (Ci is not considered). IIC Co (μF) 0.084 0.066 0.049 - a NBR IEC 60079-11 IIC C₀ (μF)
The open collector circuit is safely electrically isonal factor of the control of		do terra e de todos os ou com earth and ali other circuir. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p. Single reactances to table IIB Lo (mH) 17	IIB/IIC type of protection walves: A; P _o = 635 mW; C _i = imos admissíveis parternal values for comm IIB Co (µI 0.52 0.45 0.38 0.37 ara a tabela A.2 e fige A.2 and figure A.4 or C _o (µF) 0.820	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar. F) gura A.4 ou A.6 d A.6 of IEC 60079-1 L _o (mH) 4	A stivas comuns (Ci não é loces (Ci is not considered). IIC Co (µF) 0.084 0.066 0.049 - a NBR IEC 60079-11 IIC C _o (µF) 0.107
The open collector circuit is safely electrically iso		do terra e de todos os ou com earth and ali other circuir. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p. Single reactances to table IIB Lo (mH) 17 Tipo de proteção Ex ia Somente para conexão	itros circuitos is IIB/IIC type of protectic imum values: A; P _o = 635 mW; C _i : imos admissíveis pa ternal values for comm IIB Co (µI) 0.52 0.45 0.38 0.37 ara a tabela A.2 e fige e A.2 and figure A.4 or C _o (µF) 0.820 IIB/IIC type of protectic a um circuito intrins	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar. F) gura A.4 ou A.6 d A.6 of IEC 60079-1 L _o (mH) 4 on Intrinsic Safety ecamente seguro	A stivas comuns (Ci não é loces (Ci is not considered). IIC Co (µF) 0.084 0.066 0.049 - a NBR IEC 60079-11 IIC C _o (µF) 0.107
The open collector circuit is safely electrically iso Saída de corrente HART-current output Source Mode) (Terminal 17, 18) Saída de corrente HART- current output		do terra e de todos os ou rom earth and ali other circuir mearth and ali other circuir. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p. Single reactances to table IIB Lo (mH) 17 Tipo de proteção Ex ia Somente para conexão Only for connection to a ce	IIB/IIC type of protection imum values: A; P _o = 635 mW; C _i imos admissíveis paternal values for comm IIB Co (µI) 0.52 0.45 0.38 0.37 ara a tabela A.2 e fige A.2 and figure A.4 or C _o (µF) 0.820 IIB/IIC type of protection a um circuito intrins rtified intrisically safe c	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar. F) gura A.4 ou A.6 d A.6 of IEC 60079-1 L _o (mH) 4 on Intrinsic Safety ecamente seguro	A stivas comuns (Ci não é loces (Ci is not considered). IIC Co (µF) 0.084 0.066 0.049 - a NBR IEC 60079-11 IIC C _o (µF) 0.107
The open collector circuit is safely electrically iso Saída de corrente HART-current output Source Mode) (Terminal 17, 18) Saída de corrente HART-current output		do terra e de todos os ou com earth and ali other circuir. Tipo de proteção Ex ia Valores máximos / Max Uo = 25.2 V; Io = 101 m. Valores externos máx considerado). Maximum permissible ex Lo (mH) 0.44 0.8 1.6 13.0 Reatâncias simples p. Single reactances to table IIB Lo (mH) 17 Tipo de proteção Ex ia Somente para conexão	IIB/IIC type of protection was a tabela A.2 e fig e A.2 and figure A.4 or Co (µF) 0.820 IIB/IIC type of protection was a tabela A.2 e fig e A.2 and figure A.4 or Co (µF) 0.820 IIB/IIC type of protection a um circuito intrins rtified intrisically safe communication was a tabela was a circuito safe communication was a tabela communication was a tabela communication was a tabela A.2 e figure A.4 or Co (µF)	on Intrinsic Safety = 3 nF; L _i = 20 µH ara reatâncias efe on effective reactar F) gura A.4 ou A.6 of A.6 of IEC 60079-1 L _o (mH) 4 on Intrinsic Safety ecamente seguro ircuit.	A stivas comuns (Ci não é loces (Ci is not considered). IIC Co (µF) 0.084 0.066 0.049 - a NBR IEC 60079-11 IIC C _o (µF) 0.107

Este Certificado de Conformidade é válido somente acompanhado das páginas de 1 a 5 e somente pode ser reproduzido em sua totalidade e sem qualquer alteração.

This Certificate of Conformity is valid accompanied by pages 1 to 5 only and could be reproduced completely without any change only.

MAB Roque

Associação IEx Certificações (CNPJ: 12.845.838/0001-65) Alameda Tocantins, 75 sala 609 Barueri SP CEP 06455-020 Brasil Tel +55 11 4195-0705 contato@iexcert.org.br

IEx-FR-005, Rev.12, 21/11/2017

CERTIFICADO DE CONFORMIDADE

Certificate of Conformity

N°: IEx 19.0182X

Data de Emissão: 06/01/2020 Issuing date

Data de Validade: 05/01/2029

Revisão / Revision

N°: 2 Data: 06/01/2023

Documentos / Documents			
Título / Title	Número / Number	Revisão / Revision	Data / Date
Relatório de Avaliação da Conformidade	RACT-Ex 1166.218.19B	2	05/01/2023
Relatórios de Ensaios emitido por PTB	DE/PTB/ExTR12.0052/04	4	08/04/2022
Relatórios de Ensaios emitido por PTB	DE/PTB/ExTR12.0052/03	3	18/09/2020
Relatórios de Ensaios emitido por PTB	DE/PTB/ExTR12.0052/02	2	10/03/2020
Relatórios de Ensaios emitido por PTB	DE/PTB/ExTR12.0052/01	1	28/11/2013

Documentos / Documents.

Os documentos da Certificação estão listados no Relatório de Avaliação da Conformidade RACT-Ex 1166.218.19B.

The certification documents are listed in the Conformity Assessment Report RACT-Ex 1166.218.19B.

Observações / Notes

- a) Os equipamentos fornecidos ao mercado brasileiro devem estar de acordo com a definição do produto e a documentação aprovada neste processo de certificação:
 - processo de certificação;
 The equipment provided to the Brazilian Market shall be according to the product definition and to the documentation approved in this certification process;
- Somente as unidades fabricadas durante a vigência deste Certificado estarão cobertas por esta certificação;
 Only the units manufactured during the validity of this certificate will be covered by this certification;
- c) A validade deste Certificado está atrelada à realização das avaliações de manutenção e tratamento de possíveis não conformidades de acordo com as orientações da Associação IEx Certificações e previstas no RAC específico da portaria N° 115:2022 / Equipamentos Elétricos para Atmosferas Explosivas.
 - Para verificação da condição atualizada de regularidade deste certificado de conformidade deve ser consultado o banco de dados do Inmetro, referente a produtos e serviços certificados;
 - The validity of this Certificate is linked to the performance of the surveillance audits and treatment of possible nonconformities according to the guidelines of the Associação IEx Certificações and foreseen in the specific RAC of the ordinance N° 115:2022 Electrical Equipment for Explosive Atmospheres.

 In order to verify the updated condition of the regularity of this certificate of conformity, the Inmetro database for certified products and services must be consulted;
- d) O Selo de Identificação da Conformidade deve ser colocado na superfície externa do equipamento, em local facilmente visível; The Conformity Identification Seal shall be placed on the outer surface of the equipment in an easily visible location;
- Os produtos devem ser instalados em atendimento à norma de instalações elétricas para atmosferas explosivas (ABNT NBR IEC 60079-14);
 The products must be installed in compliance with the standards of electrical installations for Explosive Atmospheres (ABNT NBR IEC 60079-14);
- f) Esta certificação refere-se única e exclusivamente aos requisitos de avaliação da conformidade para equipamentos elétricos para atmosferas explosivas, não abrangendo outros regulamentos eventualmente aplicáveis ao produto;
 - This certification refers only and exclusively to the conformity assessment requirements for electrical equipment for explosive atmospheres, not covering any other regulation applicable to the product;
- g) As atividades de instalação, inspeção, manutenção, reparo, revisão e recuperação dos equipamentos são de responsabilidade dos usuários e devem ser executadas de acordo com os requisitos das normas técnicas vigentes e com as recomendações do fabricante; The activities of installation, inspection, maintenance, repair, revision and recuperation of equipment are the responsibility of the end users and shall be performed according to the applicable technical standards requirements and according to manufacturer recommendations;
- h) A letra "X" após o número do certificado indica as seguintes condições especiais de uso seguro do equipamento:

 The letter "X" in the Certificate Number refers to the following special conditions for safe use of the product:
 - Consultar o fabricante para fins de reparos. O reparo de juntas à prova de explosão não é permitido de acordo com os valores da tabela 3 da ABNT NBR IEC 60079-1.
 - Consult manufacturer for repairs. Repair of flameproof joints is not allowed according to values of table 3 of IEC 60079-1.
 - O circuito de interface RS485 serve exclusivamente para intercomunicação das sondas e não deve ser conectado a um circuito externo
 - The interface circuit RS485 serves exclusively for intercommunication of the probes and must not be connected to an external RS485 circuit.
 - Em atmosferas de gases para a escolha do grupo IIB ou IIC dos circuitos intrinsecamente seguros, todos os circuitos intrinsecamente seguros e o medidor de cintilação série LB 480 devem ser totalmente operados no grupo selecionado IIB ou IIC.

 In gas atmospheres for the choice of group IIB or IIC for the intrinsically safe circuits, all intrinsically safe circuits and the scintillation meter LB 480 series shall be fully operated in the selected group IIB or IIC either.

Este Certificado de Conformidade é válido somente acompanhado das páginas de 1 a 5 e somente pode ser reproduzido em sua totalidade e sem qualquer alteração.

This Certificate of Conformity is valid accompanied by pages 1 to 5 only and could be reproduced completely without any change only

Associação IEx Certificações (CNPJ: 12.845.838/0001-65) Alameda Tocantins, 75 sala 609 Barueri SP CEP 06455-020 Brasil Tel +55 11 4195-0705 contato@jexcert.org.br

IEx-FR-005, Rev.12, 21/11/2017

CERTIFICADO DE CONFORMIDADE

Certificate of Conformity

N°: IEx 19.0182X Página / Page: 5/5

Data de Emissão: 06/01/2020 Issuing date Data de Validade: 05/01/2029

Revisão / Revision

N°: 2 Data: 06/01/2023

Observações / Notes

- A sonda não deve ser instalada na zona 0 ou zona 20. O nível de proteção "ia" permite o uso seguro dos equipamentos de medição que podem ser utilizados na zona 0 ou zona 20.
 The probe must not be installed in zone 0 or zone 20. The protection level "ia" allows the safe use of measuring equipment that may otherwise only be used in
- zone 0 or zone 20.
- Os produtos foram ensaiados com 1,5 vezes a sua pressão de referência, devendo ser submetidos ao ensaio de rotina de sobrepressão em 100% de sua produção.
 The product was approved with 1.5 times the reference pressure and 100% of production shall be submitted to the overpressure routine test.

Histórico de Revisões / Revision History			
Revisão / Revision	Data / Date	Descrição / Description	
0	06/01/2020	Emissão inicial / Initial Issue	
1	30/03/2022	Atualização de Norma e Atualizações Menores / Standard update and Minor Updates	
2	06/01/2023	Recertificação, Atualização de Normas e Atualização de Documentos e de Materiais Recertification, Updating of Standards, Addition of Variants and Updating Documents and Materials	

Proposta / Proposal: 14.0.1166.218.19, 14.0.1166.101.22 & 14.0.1166.643.22

Este Certificado de Conformidade é válido somente acompanhado das páginas de 1 a 5 e somente pode ser reproduzido em sua totalidade e

sem qualquer alteração.

This Certificate of Conformity is valid accompanied by pages 1 to 5 only and could be reproduced completely without any change only.

MAB Roque

Associação IEx Certificações (CNPJ: 12.845.838/0001-65) Alameda Tocantins, 75 sala 609 Barueri SP CEP 06455-020 Brasil Tel +55 11 4195-0705 contato@iexcert.org.br

IEx-FR-005, Rev.12, 21/11/2017

Elektrische Installation

Die elektrische Installation darf nur von einer Elektrofachkraft durchgeführt werden.

Elektrische Gefahren

Lebensgefahr durch Stromschlag!

Öffnen Sie das Gehäuse nur zur Durchführung der Installations-, Wartungs- und Instandsetzungsarbeiten.

Bei geöffnetem Gehäuse können spannungsführende Teile berührt werden, wenn die Stromversorgung angeschlossen ist. Während Installation und Servicearbeiten an der Hardware des Detektors müssen Sie das Messsystem und alle Ein- und Ausgänge spannungsfrei schalten, um Berührungen mit spannungsführenden Teilen zu vermeiden.

Änderungen an der Installation dürfen ohne genaue Kenntnis dieser Bedienungsanleitung nicht vorgenommen werden.

Kabelverschraubungen, Adapter und Blindstopfen

Die Verschraubungen müssen für den jeweiligen Verwendungszweck (ATEX bzw. FM/CSA) geeignet sein.

Wird der Detektor nicht im Ex-Bereich eingesetzt, müssen die Verschraubungen, Adapter und Blindstopfen nach mindestens einer der folgenden Richtlinien oder Normen geprüft sein:

- EN50262
- UL1565
- C22.2 No. 0.17.92
- ATEX

Bei Umgebungstemperaturen von -20 bis +40°C dürfen nur metallische Kabelverschraubungen und metallische Adapter verwendet werden, die die Schutzklasse IP 65 erreichen. Die Materialbeschaffenheit der verwendeten Kabelverschraubungen, Adapter und Blindstopfen, muss für die an der Messstelle vorhandenen Umgebungsbedingungen geeignet sein.

Bei Umgebungstemperaturen größer 40°C und kleiner -20°C dürfen nur die von Berthold geprüften und zugelassenen Kabel-Verschraubungen verwendet werden.

Die Anzugsdrehmomente für die von BERTHOLD TECHNOLOGIES gelieferten Kabelverschraubungen sind in auf *Seite 1-50* aufgeführt.

Bitte beachten Sie, dass nur ein Adapter pro Leitungseinführung verwendet werden darf. Das ineinander Verschrauben von mehreren Adaptern ist nicht zulässig.

Die Gesamtlänge der Kabelverschraubung einschließlich eventueller Adapter darf 10cm nicht überschreiten.

Nicht benutzte Leitungsdurchführungen müssen durch geeignete, metallische Blindstopfen verschlossen sein.

Bei armierten Kabeln sind spezielle Kabelverschraubungen erforderlich. Die Kabelmontage ist in der Montagevorschrift der verwendeten Kabeldurchführung beschrieben.

Im Zweifelsfall empfehlen wir, fehlende Verschraubungen, Blindstopfen oder Adapter von BERTHOLD TECHNOLOGIES zu verwenden.

Kabel und Leitungen

Verwenden Sie ausschließlich Kabel, deren Durchmesser für die jeweilige Kabelverschraubung zulässig sind. Die Kabel müssen folgende Adernquerschnitte haben:

Netzkabel: 1mm² bis 2,5mm²

Signalleitungen: 0,5mm² bis 2,5mm²

Die angeschlossenen Kabel müssen mindestens für eine Temperatur geeignet sein, die 15°C über der maximalen Umgebungstemperatur liegt.

Werden eigensichere Signalleitungen durch Bereiche mit explosionsfähiger Staubatmosphäre oder durch die Zone 0 geführt, dann müssen sie gegen elektrostatische Aufladung geschützt werden.

Die angeschlossenen Kabel dürfen keinesfalls einer Zugspannung ausgesetzt sein, sondern müssen zugentlastet verlegt sein. Schlagen Sie am besten eine Kabelschlaufe vor dem Gehäuseeintritt.

Besteht die Gefahr, dass die Kabel als Trittleiter missbraucht werden, dann sind die Kabel entsprechend geschützt zu verlegen, zum Beispiel in Leitungsrohren. Achten Sie auch darauf, dass die Kabel, die am Detektor angeschlossen sind, scheuerfrei und knickfrei verlegt sind.

Kabelschirmung Pt100

Bei SIL-zertifizierten Detektoren sind für den Pt100 abgeschirmte Signalleitungen zu verwenden.

Litzenleitung

Die Enden von mehradrigen bzw. Feindrahtleitungen (Litze) dürfen nicht verzinnt oder verlötet werden. Erlaubte Varianten sind Aderendhülsen und Direkteinführung der Litze.

i WICHTIG

Beim Einbau von Feindrahtleitungen in eine Klemme bleiben häufig einzelne Drähte am Rand der Klemme hängen, werden dadurch zurückgeschoben und stehen im ungünstigsten Fall über den isolierten Rand der Klemme vor. Stellen Sie daher sicher, dass alle Mehr- bzw. Feindrahtleitungen von der Klemme erfasst werden und untergeklemmt sind.

Schutzleiter

Der Schutzleiter muss auf die mit PE gekennzeichneten Klemmen aufgelegt werden. Bei zusammen geschalteten Detektoren (Multidetektorbetrieb) darf der PE nicht von einem Detektor zum anderen durchgeschleift werden. Deshalb sind Versorgungsleitungen mit PE

> 54733-20BA1S 05.2025

sternförmig von einem Anschlusskasten zu den einzelnen Detektoren zu führen.

Potentialausgleich

Trennvorrichtung

Der Detektor ist an einer Potentialausgleichsschiene vor Ort anzuschließen. Die Leitung zu dieser Schiene muss möglichst kurz sein.

Eine Trennvorrichtung

- muss vorhanden sein (Vorschrift nach EN 61010-1)
- muss für das Wartungspersonal leicht zugänglich sein
- ist in die firmeninterne Dokumentation aufzunehmen

Sie kann in Form eines Sicherungsautomaten oder als Schalter installiert sein und muss den Anforderungen nach IEC 947-1 und IEC 947-3 genügen. Wird eine Sicherung verwendet, darf diese erst bei einem Strom von größer als 4A pro Gerät auslösen.

Allgemeine, bei der Installation wichtige Punkte

i

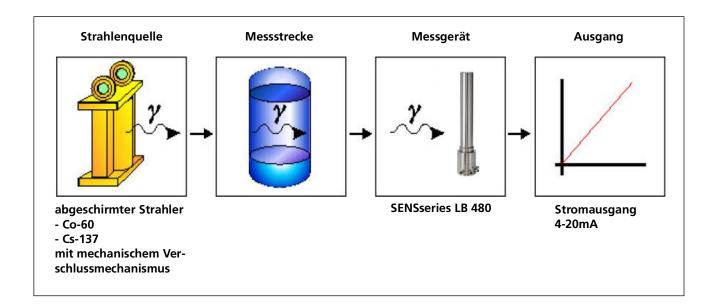
i WICHTIG

Öffnen Sie den Anschlussraum nur bei trockenen Umgebungsbedingungen, keinesfalls bei Regen.

Feuchtigkeit im Anschlussraum kann sowohl einen Kurzschluss mit anderen Leitungen verursachen als auch den Ex-Schutz aufheben.

- Beachten Sie die Hinweisschilder auf den Detektoren.
- Führen Sie den Leitungsanschluss mit besonderer Sorgfalt durch.
- Die Anschlussleitung und ihre Verlegung müssen den geltenden Vorschriften entsprechen.
- Stellen Sie beim Verlegen der Kabel sicher, dass mechanische Beschädigungen der Leiterisolation an scharfkantigen oder beweglichen Metallteilen ausgeschlossen sind. Ggf. ist das Kabel entsprechend geschützt zu verlegen, z.B. in Leitungsrohren.
- Verlegen Sie die Anschlussleitungen im Anschlussraum so, dass
 - Schmutz und Feuchtigkeit im Anschlussraum vermieden wird.
 - Beim Abisolieren die Leiter nicht beschädigt werden.
 - Die Leiterisolation bzw. der Kragen der Aderendhülse bis in das Gehäuse des Klemmenkörpers hineinreicht.
 - Blanke leitfähige Teile der Leitungen (z. B. Drähtchen einer Litze) nicht aus dem Klemmenkörper herausstehen.
 - Die Länge der Aderendhülse bzw. der abisolierten Ader muss 10 mm betragen, damit die Ader sicher in der Federzugklemme gehalten wird.
 - Sofern Adernendhülsen verwendet werden, die Leiterisolation bis in den Kragen der Aderendhülse hineinreicht.
 - Die für den jeweiligen Leiterquerschnitt zulässigen minimalen Biegeradien nicht unterschritten werden.
 - Die Kabel zugentlastet und scheuerfrei verlegt sind.

- Die Detektoren der SENSseries dürfen nur mit vollständig geschlossenem Gehäuse betrieben werden.
- Ein Reinigen korrodierter Gewinde an den Kabelverschraubungen oder den Kabeldurchführungen mit Schleifmittel oder Drahtbürste ist nicht zulässig.
- Die Verwendung der Detektoren ist unzulässig wenn:
 - Kabelverschraubungen korrodiert oder beschädigt sind.
 - Gewinde am Gehäuse korrodiert oder beschädigt sind.
 - Blindstopfen stark korrodiert oder beschädigt sind.
 - das Gehäuse des Detektors stark korrodiert oder beschädigt ist.
 - Dichtungen beschädigt sind, eine sichtbare Alterung, oder Setzung aufweisen.


7

Funktionale Sicherheit

7.1 Anwendungsbereich

Dieses Sicherheitshandbuch gilt für radiometrische Messsysteme, bestehend aus Strahlenquelle und dem Messgerät der SENSseries LB 480. Das Messsystem kann in folgenden Applikationen eingesetzt werden:

- Füllstandsmessung (auch kaskadiert in einer Master-Slave Anordnung)
- Grenzstandmessung (als Max- und Min-Grenzschalter)
- Dichtemessung

7.2 Verwendung

Das Messgerät LB 480 darf nur bestimmungsgemäß verwendet werden. Zulässige Messanordnungen als auch der bestimmungsmäßige Gebrauch sind in der Betriebsanleitung dargestellt.

Für den Einsatz in sicherheitsrelevanten Systemen (Funktionale Sicherheit nach IEC 61508:2010 / 61511:2003) müssen alle in diesem Handbuch gemachten Angaben beachtet werden.

Das Messgerät kann in der Betriebsart mit niedriger Anforderungsrate (Low Demand) oder mit hoher Anforderungsrate (High Demand) betrieben werden. Hierzu müssen speziell die Bestimmungen nach 7.4.5.3 der IEC 61508-2 zur Anforderungsrate beachtet werden

- bis SIL 2 mit einem Detektor LB 480
- bis SIL 3 mit zwei Detektoren LB 480

Jede Verwendung, die über die in diesem Handbuch gemachten Angaben hinausgeht, gilt als nicht bestimmungsgemäß und kann schwere Personen- oder Sachschäden zur Folge haben. Für derartige Verletzungen oder Beschädigungen übernimmt die Firma BERTHOLD TECHNOLOGIES GmbH & Co. KG keine Haftung.

7.3 Mit geltende Dokumente und Unterlagen

Je nach Ausführung des Messsystems muss folgende Dokumentation beachtet werden

Тур	Betriebsanleitung	
Füllstandmessung	LB 480 Füllstandmessung	
	Id. Nr. 54733-10BA1L deutsch	
	Id. Nr. 54733-10BA2L englisch	
Grenzstandmessung	LB 480 Grenzhöhenschalter	
	Id. Nr. 54733-20BA1S deutsch	
	Id. Nr. 54733-20BA2S englisch	
Dichtemessung	LB 480 Dichtemessung	
	Id. Nr. 54733-30BA1D deutsch	
	Id. Nr. 54733-30BA2D englisch	

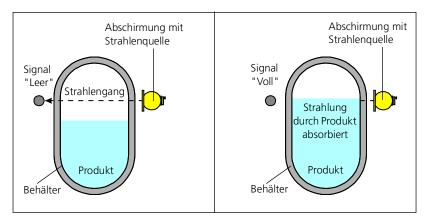
Die SIL-Konformität ist im angehängten Zertifikat bescheinigt.

7.4 Identifikation des Detektors

SIL-zertifiziert Detektoren sind auf dem Typenschild mit der Bezeichnung "SIL" und im LB Nummernschlüssel zusätzlich mit einem "S" gekennzeichnet (siehe folgendes Bild).

7.5 Projektierung

7.5.1 Sicherheitsfunktion


Das Messsystem SENSseries LB 480 dient der berührungslosen Messung von Füllstand, Dichte oder Konzentration. Durch eine Gamma-Strahlungsquelle (Co-60 oder Cs-137) wird ein Strahlungsfeld erzeugt, das durch das zu vermessende Produkt geschwächt bzw. absorbiert wird und durch den Szintillationsdetektor LB 480 nachgewiesen wird.

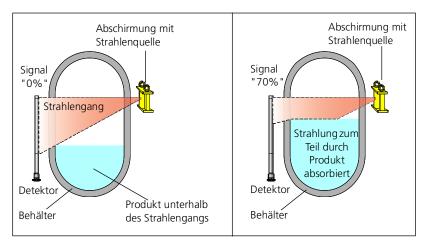
Die folgenden Darstellungen sind beispielhaft für die jeweilige Applikation. Die Sicherheitsgenauigkeit, sprich die nicht detektierte Messwert-Abweichung ist <2%. Beim Einsatz von Tower-SENS-Detektoren ist die Messwert-Abweichung <5%. Angaben zur Genauigkeit der Messung finden Sie in den technischen Daten der Betriebsanleitung.

7.5.1.1 Grenzstandmessung

Das Messystem besteht aus einem Detektor und einer Strahlenquelle. Diese werden mechanisch an der Füllhöhe positioniert, an der ein Alarm erfolgen soll. Die Sicherheitsfunktion besteht darin, den Füllstand des zu überwachenden Produktes an einer definierten Füllhöhe zu überwachen. Dies kann sowohl eine Überfüll-, als auch eine Unterfüllsicherung sein.

Solange der Füllstand unterhalb des Strahlenganges ist, empfängt der Detektor die Strahlung der Strahlenquelle und meldet "Leer". Steigt der Füllstand an und erreicht die Höhe des Strahlenganges, dann wird die Strahlung durch das Produkt absorbiert. Die deutlich verringerte Strahlungsintensität wertet der Detektor als Signal "Voll" aus.

Das Signal "Leer" wird am analogen Stromausgang mit 4mA dargestellt, das Signal "Voll" mit 20mA.


Messprinzip

7.5.1.2 Füllstandmessung

Das Messystem besteht aus einem Detektor und einer Strahlenquelle. Sowohl Detektor als auch die Strahlenquelle, können stab-, oder punktförmig ausgelegt sein. Diese werden mechanisch so positioniert, dass der gewünschte Messbereich erfasst werden kann. Die Sicherheitsfunktion besteht darin, den Füllstand des Produktes innerhalb des Messbereiches zu überwachen.

Messprinzip

Solange der Füllstand den Bereich des Strahlenganges nicht erreicht, kommt die Strahlung ungehindert am Detektor an. Sobald der Füllstand in den Messbereich kommt wird ein Teil der Strahlung absorbiert. Diese verringerte Strahlungsintensität wird am Detektor als Füllstandsanstieg signalisiert wird. Je weiter der Füllstand ansteigt, desto mehr verringert sich die Strahlung, was der Detektor als kontinuierlichen Füllstandsanstieg von 0 bis 100% signalisiert.

Die Füllstandsänderung von 0 \dots 100% wird mit dem analogen Stromausgang mit 4 \dots 20mA dargestellt.

7.5.1.3 Dichtemessung

Das Messystem besteht aus einem Detektor und einer Strahlenquelle. Diese werden mechanisch so positioniert, dass der Strahlengang durch das Produkt verläuft um die Produktdichte zu erfassen. Die Sicherheitsfunktion besteht darin, die Dichte des Produktes innerhalb eines definierten Dichtemessbereiches zu überwachen.

Eine höhere Produktdichte verringert die Strahlungsintensität am Detektor. Eine niedrigere Produktdichte erhöht die Strahlungsintensität am Detektor. Die veränderte Strahlungsintensität wird im Detektor als kontinuierliches Signal innerhalb des Messbereiches ausgegeben.

Produkt-Dichte "B" Abschirmung mit Produkt-Dichte "A" Abschirmung mit Strahlenguelle z.B. 1.2 g/cm³ Strahlenguelle z.B. 1.0 g/cm³ Signal Signal "1.0g/cm³" " 1.2g/cm³ " Detektor Detektor Strahlengang Strahlengang Rohrleitung Rohrleitung

Der Detektor signalisiert die Dichteänderung über das analoge Stromsignal. Der untere Messbereich der Dichte entspricht 4mA, der obere Messbereich entspricht 20mA. Für eine Temperaturkompensation kann der Pt100 verwendet werden.

Messprinzip

7.5.2 Allgemeine Hinweise und Einschränkungen

- Die anwendungsspezifischen Grenzen sind einzuhalten und die technischen Spezifikationen dürfen nicht überschritten werden. Siehe Betriebsanleitung.
- Die Behälter-Geometrie, die bei der Strahler-Detektorberechnung zugrunde lag, darf sich von der an der montierten Messstelle nicht unterscheiden. Abweichungen sind mit BERTHOLD TECHNOLOGIES abzustimmen.
- Für Sicherheitsfunktionen darf ausschließlich das analoge 4-20mA Stromausgangssignal verwendet werden.
- Das Messignal darf nur dann vom Leitsystem verwendet werden, wenn der Safety Mode aktiviert ist.
- Die RS485 Schnittstelle darf ausschließlich zur Master-Slave Kommunikation verwendet werden.
- Der HART®-Multidrop Betrieb ist nicht zulässig.
- Sind Magnetfelder in unmittelbarer Umgebung der Messstelle, dann muss durch geeignete Tests sicher gestellt werden, dass die Magnetfeldintensität das Messsignal nicht beeinflusst.
- Es sind nur Strahlungsquellen mit den Isotopen Co-60 oder Cs-137 zu verwenden.
- Es dürfen ausschließlich Abschirmungen der Firma Berthold verwendet werden.
- Die Strahler-Abschirmungen dürfen im Betrieb
 - nicht geschlossen werden
 - nicht in ihrer Position verändert oder gar entfernt werden
- Es muss verhindert werden, dass keine zusätzlichen Absorber (z.B. Stahlplatten) in den Strahlengang kommen, die bei der IBN nicht berücksichtigt wurden.
- Ein Einfluss benachbarter radiometrischen Messstellen ist zu vermeiden. Im Zweifelsfall ist die Anordnung der Messstelle mit BERTHOLD TECHNOLOGIES abzustimmen.
- Die Zusammenschaltung mehrerer Detektoren zu einem Multidetektorsystem ist zulässig. In einer Zusammenschaltung, darf nur ein Detektor als Master-Detektor konfiguriert sein.
- Bei einem Multidetektorsystem muss die Zeitkonstante
 >2 Sekunden sein.
- Der Anwender ist für die Validierung der Sicherheitsfunktion verantwortlich.
- Die folgenden Detektortypen k\u00f6nnen nur dann verwendet werden, wenn innerhalb des Messbereiches alle Z\u00e4hlraten \u00fcber 1000 Ips sind.
 - LB 480-13 (CrystalSENS 40/35)
 - LB 480-14 (CrystalSENS 40/35 mit Wasserkühlung)
 - LB 480-15 (CrystalSENS 25/25)
 - LB 480-16 (CrystalSENS 25/25 mit Wasserkühlung)

Diese Detektoren können ausschließlich mit Detektorcode "0" betrieben werden.

- Bei den folgenden Detektortypen muss der Detektorcode "1" verwendet werden: wenn innerhalb des Messbereiches Zählraten von weniger als 1000 Ips vorkommen können. Im anderen Fall kann Detektorcode "0" verwendet werden.
 - LB 480-11 (CrystalSENS 50/50)
 - LB 480-12 (CrystalSENS 50/50 mit Wasserkühlung)
- Für den Fehlerstrom (Loop Alarm Type) sind die folgenden Einstellungen möglich:

High: >21mALow: <3,6mA

7.5.3 Annahmen

Für die Bewertung des Messgeräts nach funktionaler Sicherheit, wurden folgende Annahmen zugrundegelegt:

- Die Ausfallraten sind über die Lebensdauer betrachtet konstant.
- Die Umweltbedingungen entsprechen einer durchschnittlichen industriellen Umgebung.
- Die Reparaturzeit (Austausch des Messsystems) nach einem störsicherem Fehler beträgt 72 Stunden. (MTTR¹= 72h).
- Die maximale Betriebsdauer wird begrenzt durch die mittlere Zählrate und dem verwendeten Szintillator:

	maximale Betriebsdauer	
mittlere Zählrate	CrystalSENS (Punkt-Detektoren mit NaI-Kristall)	UniSENS (Stabdetektoren) SuperSENS TowerSENS
40000 cps	10 Jahre	10 Jahre
80000 cps	5 Jahre	10 Jahre

Bei einer Dichtemessung kann eine Temperaturkompensation verwendet werden

Nicht betrachtet Fehlerfälle sind:

- Schließen oder Entfernen des Strahlers
- Ausfallraten von externen Stromversorgungen
- Mehrfachfehler

1. MTTR = Mean Time To Repair

7.5.3.1 Ermittlung der Ausfallraten

Die Ausfallraten des Gerätes wurden durch eine FMEDA nach IEC61508 ermittelt. Den Berechnungen sind Bauelementeausfallraten nach SN29500 zugrunde gelegt. Alle Zahlenwerte beziehen sich auf eine mittlere Umgebungstempertur während der Betriebszeit von 40°C (104°F). Für höhere Temperaturen sollten die Werte korrigiert werden:

- Dauereinsatztemperatur 50 ... 60°C (122...140°F) um Faktor 1,3
- Dauereinsatztemperatur 60 ... 70°C (140...158°F) um Faktor 2,5
- Dauereinsatztemperatur 70 ... 80°C (158...176°F) um Faktor 4,5

Ähnliche Faktoren gelten, wenn häufge Temperaturschwankungen zu erwarten sind.

7.6 Geräteverhalten im Betrieb

7.6.1 Geräteverhalten beim Einschalten

Beim Einschalten startet eine Diagnosephase von 15 Sekunden in der das Messgerät auf Fehler geprüft wird. Dabei durchläuft der Stromausgang die Zustände 24mA, 1,5mA und 22mA. Während dieser Zeit ist keine Kommunikation mit dem Gerät möglich.

Wurde während er Diagnosephase ein Fehler festgestellt, dann geht das Gerät auf Fehlerstrom. Im anderen Fall wird ein Strom im Bereich von 3,8 ... 20,5mA ausgegeben.

7.6.2 Verhalten des Stromausganges im Fehlerfall

Erkennt das Messgerät eine Störung so wird der Stromausgang in den sicheren Zustand gebracht.

Fehler >21mA bzw. <3.6mA:

Ein detailliertes Fehlerverhalten finden Sie in der Betriebsanleitung.

7.6.3 Geräteverhalten bei Störstrahlung

Das LB 480 bietet die Möglichkeit Störstrahlung, z. B. bei Schweißnahtprüfungen, zu erkennen. Bei Störstrahlung geht der Messwert, für die im Gerät eingestellte Wartezeit, auf Fehlerstrom. In dieser Zeit kann ein Über- oder Unterfüllen nicht erkannt werden. Auch wenn das LB 480 eine sehr empfindliche Erkennung von Störstrahlung besitzt, kann letztlich nicht ausgeschlossen werden, dass speziell niedrige Störstrahlungseinflüsse nicht erkannt werden, und der Messwert verfälscht wird. Aus diesem Grund ist es generell erforderlich dass der Anlagenführer zuvor informiert wird und geeignete Maßnahmen ergriffen werden, die den sicheren Betrieb der Anlage aufrecht erhalten.

7.7 Montage und Verdrahtung

Die Montage und Verdrahtung ist in der jeweiligen Betriebsanleitung beschrieben.

Bei Bedarf können folgende Eingänge angeschlossen und verwendet werden:

- Pt100 zur Temp.-Kompensation
- RS485 zur Kaskadierung als Multidetektorsystem

Die Verwendung anderer Eingänge ist bei sicherheitsbezogener Verwendung nicht zulässig.

7.8 Inbetriebnahme

Zur Inbetriebnahme sind folgende Hilfsmittel zulässig:

- HART[®]-Kommunikator
- Die PC-basierende Bediensoftware LB 480-PC.

Für die Inbetriebnahme wird die Kenntnis der jeweiligen Betriebsanleitung (Füllstand, Grenzstand, oder Dichte) vorausgesetzt.

Führen Sie die Inbetriebnahme in folgenden Schritten aus:

- 1. Kalibrierung (siehe Betriebsanleitung Band 3, Kapitel 5)
- 2. Safety Mode aktivieren

Menüpfad: Device Config>Access>Safety ON

Mit dieser Einstellung wird die sicherheitsverträgliche Einstellung geprüft und der Detektor LB 480 verriegelt.

Der Safety Mode bleibt auch dann erhalten wenn das Gerät aus- und wieder eingeschaltet wurde.

3. Safety Parameter und Messwert prüfen

Menüpfad: Diagnostic>Safety>Refresh Safety Status

- Zunächst Safety Stati aktualisieren.
 Hierzu Parameter "Refresh Safety Status" auswählen.
- Danach müssen Safety Status 1, 2 und 3 den Wert 0xFF anzeigen

Im andern Fall kann die Messung nicht in einer Schutzeinrichtung verwendet werden. Erst wenn anschließend die Einstellungen so korrigiert sind das bei aktivem "Safety Mode" 0xFF angezeigt wird, kann die Messung in einer Schutzeinrichtung verwendet werden. Eine Hilfe hierzu bietet der Kurztext in den Safety-Parametern im jeweiligen Menü von Safety Status 1, 2 und 3.

Multidetektorbetrieb:

Bei einem Multidetektorbetrieb von zwei oder mehr Detektoren müssen auch die angeschlossenen Slave-Detektoren überprüft werden. Hierzu müssen mit dem Parameter **Active Detector No.** die angeschlossenen Slaves einzeln angewählt werden. Jedes Mal nach einer Änderung von **Active Detector No.**, ist mit **Refresh Safety Status** der Status zu aktualisieren.

Bitte beachten sie das *Kapitel 7.9 "Wiederkehrende Prüfungen"* damit direkt im Anschluss an der IBN die Referenzwerte für diese Prüfung ermittelt werden können.

7.9 Wiederkehrende Prüfungen

Der Wiederkehrende Funktionstest dient dazu, die Sicherheitsfunktion zu überprüfen, um mögliche, nicht erkennbare gefährliche Fehler aufzudecken und damit Funktionsfähigkeit des Messsystems in angemessenen Zeitabständen zu prüfen. Es liegt in der Verantwortung des Betreibers, die Art der Überprüfung zu wählen.

Die Zeitabstände richten sich nach dem in Anspruch genommenen PFD -Wert (siehe Tabelle in Kapitel 7.11).

Die Prüfung ist so durchzuführen, dass die einwandfreie Sicherheitsfunktion im Zusammenwirken aller Komponenten nachgewiesen wird. Die bei den Tests verwendeten Methoden und Verfahren müssen benannt und deren Eignungsgrad spezifiziert werden. Die Prüfungen sind zu dokumentieren.

Verläuft der Funktionstest negativ, muss das gesamte Messsystem außer Betrieb genommen werden und der Prozess durch andere Maßnahmen im sicheren Zustand gehalten werden.

Die erste Prüfung muss direkt nach der Inbetriebnahme erfolgen, damit die Referenzwerte und die Rahmenbedingungen definiert sind und diese bei den folgenden wiederkehrenden Prüfungen als Referenz zur Verfügung stehen.

WICHTIG

Während des Tests muss der Durchführende die sicherheitstechnische Überwachung des Prozesses durch andere technische und/ oder organisatorische Maßnahmen sicherstellen.

Möglichkeiten der Überprüfung 7.9.1

Die Möglichkeiten der Überprüfung (Proof-Test) des Messgeräts als Komponente des Messsystems unterscheiden sich aufgrund der Applikation in der das Messgerät eingesetzt wird. Möglichkeiten zur Überprüfung sind im Folgenden aufgeführt. Dabei ist zu beachten dass dies möglichst unter Betriebsbedingungen erfolgt, sofern bestimmte Betriebsbedingungen Auswirkungen auf die Messung haben. Ist z.B. ein Rührer im Strahlengang, dann muss er wie unter Betriebsbedingungen betrieben werden. Das gleiche gilt auch für Behälter unter Gasdruck und für Heiz- und Kühlmäntel um zwei weitere Beispiele zu nennen. Es liegt in der Verantwortung des Betreibers, die Art der Überprüfung zu wählen. Der Zeitabstand richtet sich nach dem in Anspruch genommenen PFD (siehe Tabelle in Kapitel 7.11).

7.9.1.1 Applikation Grenzstand

Eine Überprüfung der Funktion in der Applikation Grenzstand kann durch ein Anfahren der Ansprechhöhe im Rahmen einer Befüllung gewährleistet werden. Wenn eine Befüllung nicht praktikabel ist, so ist das Messsystem durch geeignete Simulation des Füllstandes oder des physikalischen Messeffektes zum Ansprechen zu bringen.

7.9.1.2 Applikation Füllstand

In der Applikation Füllstand ist eine Überprüfung der Funktion auf folgende Weise durchführbar:

- Strahler offen, Behälter leer ⇒ Nullpunkt muss geprüft werden können.
- 2. Strahler zu, Behälter leer ⇒ Messwert der Inbetriebnahme unter gleichen Bedingungen muss erreicht werden.

7.9.1.3 Applikation Dichte

In der Applikation Dichte kann eine Überprüfung der Funktion nur durch eine Referenzflüssigkeit durchgeführt werden bei der die Dichte bekannt ist. Ein Beispiel wäre das Befüllen der Messstrecke mit Wasser. Ist dies nicht möglich so muss eine Referenzprobe im Labor untersucht und deren Ergebnis mit dem Ergebnis des Messgeräts verglichen werden.

Generell ergibt eine 2-Punkt-Überprüfung eine höhere Sicherheit. Ein zweiter Punkt sollte einen möglichst großen Abstand zum ersten Punkt haben. Empfehlenswert ist eine Differenz der beiden Punkte von >30% des Messbereiches.

7.10 Reparatur

Eine Reparatur der SENSseries LB 480 darf ausschließlich im Herstellerwerk erfolgen.

7.10.1 Softwareupdate

Ein Softwareupdate darf nur durch ein von BERTHOLD TECHNOLOGIES autorisiertes Personal durchgeführt werden.

7.11 Datenblatt der Funktionalen Sicherheit LB 480

7.11.1 SIL 2 bei System-Architektur 1001 (1-Kanal)

Kenngröße	Wert
Schutzfunktion	- Grenzstandmessung
	- Füllstandsmessung
	- Dichtemessung
SIL	SIL 2 mit einem Detektor LB 480 (SIL2 SC3 FT0)
HFT	0
Gerätetyp	В
SFF	92%
MTTR, MRT	72h
λsd	0 FIT
λsu	0 FIT
λdd	2450 FIT
λdu	210 FIT
λtot	2660 FIT
PFDavg für T1 = 1 Jahr	<1,12E-03
PFDavg für T1 = 2 Jahre	<2,04E-03
PFDavg für T1 = 5 Jahre	<4,79E-03
PFDavg für T1 = 10 Jahre	<9,39E-03
PFH	<2,11E-07 1/h
MTBF	>42 Jahre
Diagnose Testintervall	< 180s
Betriebsart	Low Demand, oder High Demand
Maximale Demand Rate	= Diagnose Testintervall * 100
DC	95%
Fehlerreaktionszeit*	0,5s

^{*)} Die Fehlerreaktionszeit ist die Zeit, zwischen der Fehlererkennung und dem Setzen des Fehlerstroms (<3,6mA oder >21mA).

Bei einer Kaskade müssen die Werte für PFD und PFH mit der Anzahl der Detektoren mulitipliziert werden.

7.11.2 SIL 3 bei System-Architektur 1002 (2-Kanal)

Kenngröße	Wert
Schutzfunktion	- Grenzstandmessung
	- Füllstandsmessung
	- Dichtemessung
SIL	SIL 3 mit zwei Detektoren LB 480 (SIL3 SC3 FT1)
HFT	1
Gerätetyp	В
MTTR, MRT	72h
Beta	5%
PFDg für T1 = 1 Jahr	<5,6E-05
PFDg für T1 = 2 Jahre	<1,0E-04
PFDg für T1 = 5 Jahre	<2,4E-04
PFDg für T1 = 10 Jahre	<4,7E-04
PFH	<2,11E-07 1/h
MTBF	>19 Jahre
Betriebsart	Low Demand, oder High Demand
Reaktionszeit	10sec
DC	95%

Bei einer Kaskade müssen die Werte für PFD und PFH mit der Anzahl der Detektoren mulitipliziert werden.

7.12 Anhänge

7.12.1 Prüfprotokoll

Identifikation	
Firma/Prüfer	
Datum	
Messstelle	
Produkt	
Bestellnummer	
Isotop, Strahler-Nr., Aktivität	
Detektortyp, Detektorgröße	
Hochspannung	
Datum vom letzten Funktionstest	
Geräteparameter der Si	cherheitsfunktion
Betriebsart	☐ Grenzschalter Max
	☐ Grenzschalter Min
	☐ Füllstand
	□ Dichte
unterer Messbereich (Einheit)	
oberer Messbereich (Einheit)	
Prüfung	
Messwert 1 (Einheit)	
Messwert 2 (Einheit)	
Safety Status	
Safety Status 1	□ 0xFF
Safety Status 2	□ 0xFF
Safety Status 3	□ 0xFF
Datum: Untersch	urift:

54733-20BA1S 05.2025

7.12.2 Begriffsdefinition

SIL	Safety Integrity Level
HFT	Hardware Fault Tolerance
SFF	Safe Failure Fraction
PFD _{AVG}	Average Probability of Dangerous Failure on Demand
PFH	Average Probability of Dangerous Failure on Demand
FMEDA	Failure Mode, Effects and Diagnostics Analysis
FIT	Failure in Time (1 FIT = 1 failure/109h)
λsd	Rate for safe detected failure
λsu	Rate for safe undetected failure
λs	$\lambda s = \lambda sd + \lambda su$
λdd	Rate for dangerous detected failure
λdu	Rate for dangerous undetected failure
DC	Diagnostic Coverage
T1	Proof Test Interval
MTBF	Mean Time Between Failure
MTTR	Mean Time To Repair
IBN	Inbetriebnahme

Product Service

7.13 Zertifikat Funktionale Sicherheit

CERTIFICATE

No. Z10 14 05 47128 001

Holder of Certificate: Berthold Technologies

GmbH & Co. KG Calmbacher Str. 22

75323 Bad Wildbad **GERMANY**

Factory(ies): 47128

Certification Mark:

Product: Sensors

Measuring System

Model(s): SENSseries LB 480

Parameters:

SIL2, SC3 SIL3, SC3 Architecture 1001: Architecture 1002: Degree of Protection: IP66 / IP68

Tested

IEC 61508-1:2010 IEC 61508-2:2010 according to: IEC 61508-3:2010

The product was tested on a voluntary basis and complies with the essential requirements. The certification mark shown above can be affixed on the product. It is not permitted to alter the certification mark in any way. In addition the certification holder must not transfer the certificate to third parties. See also notes overleaf.

Test report no.: BB85808T

Date, 2014-06-03

(Peter Weiss)

Page 1 of 1

TÜV SÜD Product Service GmbH · Zertifizierstelle · Ridlerstraße 65 · 80339 München · Germany

 $\text{TUV}^{\text{\tiny{\$}}}$

CERTIFICAT

Zertifiziervertrag

Grundlage für die Zertifikatserteilung ist die Prüf- und Zertifizierordnung von TÜV SÜD Product Service.

Mit Erhalt des Zertifikates erkennt der Zertifikatsinhaber die jeweils gültige Fassung der Prüf- und Zertifizierordnung an (www.tuev-sued.de/ps_regulations) und wird somit Partner im Zertifiziersystem von TÜV SÜD Product Service.

Prinzipielle Voraussetzung für die Gültigkeit des Zertifikates:

- Gültigkeit der zitierten normativen Prüfgrundlage(n) ist gegeben

und zusätzlich bei Zertifikaten mit Berechtigung zur Verwendung eines Prüfzeichens bzw. bei Zertifikaten für QM-Systeme:

- Voraussetzungen für vorschriftsmäßige Fertigung werden eingehalten.
- Die Fertigungs- bzw. Betriebsstätten werden regelmäßig überwacht.

Certification contract

Certification is based on the TÜV SÜD Product Service Testing and Certification Regulations

On receipt of the certificate the certificate holder agrees to the current version of the Testing and Certification Regulations (www.tuev-sued.de/ps_regulations) and thus becomes partner in the TÜV SÜD Product Service Certification System.

Requirements for the validity of the certificate in principle:

Validity of the quoted test standard(s)

In addition for certificates with the right to use a certification mark and for QM certificates:

- Conditions for an adequate manufacturing are maintained
- Regular surveillance of the facility is performed

Akkreditierungen / Benennungen (Status 25.02.2010) / Accreditations / notifications (as of 2010-02-25)

Deutschland / Germany

Geräte- und Produktsicherheitsgesetz (GPSG) / Equipment and Product Safety Act (GPSG)

Europa / Europe

- Niederspannungsrichtlinie 2006/95/EG
- Spielzeugrichtlinie 2009/48/EG
- Richtlinie für aktive medizinische Implantate 90/385/EWG
- Richtlinie für Medizinprodukte 93/42/EWG
- Richtlinie für In-vitro-Diagnostika 98/79/EG
 Richtlinie für Gasverbrauchseinrichtungen 90/396/EWG
- Richtlinie für persönliche Schutzausrüstungen 89/686/EWG
- Richtlinie f
 ür Sportboote 94/25/EG + 2003/44/EG
- Richtlinie für Maschinen 2006/42/EG
- Richtlinie f
 ür Ex-Schutz Ger
 äte 94/9/EG
- Low Voltage Directive 2006/95/EC
- Directive for Active Implantable Medical Devices 90/385/EEC
 Directive for Medical Devices 93/42/EEC
- Directive on In Vitro Diagnostic Medical Devices 98/79/EC
- Directive for Gas Appliances 90/396/EEC
- Directive for Personal Protective Equipment 89/686/EEC
- EMC Directive 2004/108/EC
- Directive for Recreational Craft 94/25/EC + 2003/44/EC
- Directive for Machinery 2006/42/EC
- Directive for Ex Safe Equipment 94/9/EC
- ENEC Agreement for luminaires and IT equipment

USA

- Nationally Recognized Testing Laboratory (NRTL) to 29 CFR 1910.7 by OSHA
- Accredited for FDA 510(k) Third Party Review
- Conformity Assessment Body to the MRA for Medical Devices; FDA QSReg Inspections, FDA 510(k) Third Party

Asien-Pazifik Region / Asia Pacific

- Recognized Certification Body to Electrical Products (Safety) Regulation; Hong Kong
- Konformitätsbewertungsstelle / Conformity Assessment Body to the MRA for Medical Devices; Australien / Australia
- Konformitätsbewertungsstelle / Conformity Assessment Body to the MRA for Medical Devices; Neuseeland / New Zealand

Weltweit / Worldwide

- NCB im CB-Scheme des IECEE / NCB in the CB Scheme of IECEE
- ExCB im IECEx-Scheme des IECEE /
- ExCB in the IECEx Scheme of IECEE
- TÜV SÜD Product Service Mark für Produkte / TÜV SÜD Product Service Mark for products DAP-ZE-1213.00
- Zertifizierung von QMS / Certification of QMS TGA-ZM-08-93-00
- · Zertifizierung von QMS gemäß / Certification of QMS according to (DIN) EN ISO 13485 / ISO 13485

Zertifizierstelle für Produkte / Certification Body for Products • e-mail ps-zert@tuev-sued.de Zertifizierstelle für Medizinprodukte / Certification Body for Medical Devices • e-mail ZASMAIL@tuev-sued.de Kundenservice / Clients Services • Phone +49/89/50 08-42 61 • Fax +49/89/50 08-42 30 • e-mail ps-zert@tuev-sued.de

8

Sichtprüfung

Führen Sie regelmäßig eine Sichtprüfung am Messsystem SENSseries durch, mindestens aber jährlich. Verwenden Sie hierzu den Plan für die Sichtprüfung auf *Seite 1-54*. Leiten Sie sofort entsprechende Maßnahmen ein, sofern Sie Mängel bei der Sichtprüfung feststellen; trennen Sie ggf. den Detektor sofort vom Netz.

Beziehen Sie bei der Bestimmung der Prüfintervalle für die Sichtprüfung folgende Bedingungen ein:

- Umgebungsbedingungen (im Freien, Regen, Sonnenlicht, Hitze und Kälte).
- Betriebsbedingungen (Auslastungsgrad der Anlagen, Fehlbedienung)
- Messstelle wird in, oder außerhalb einer Ex-Zone betrieben.

Führen Sie vor der ersten Inbetriebnahme und bei jeder erforderlichen Reparatur, bei der der Gehäusedeckel des Detektors geöffnet werden muss, eine Sichtprüfung durch und kontrollieren Sie den Anschlussraum. Verwenden Sie hierzu den Plan für die Sichtprüfung (Band 1) auf Seite 1-54 und den Plan für die Kontrolle des Anschlussraumes auf Seite 1-56.

8 Sichtprüfung Band 1

9

Wiederkehrender Funktionstest

Der "Wiederkehrende Funktionstest" dient dazu, die Sicherheitsfunktion zu überprüfen, um mögliche, nicht erkennbare gefährliche Fehler aufzudecken.

Es liegt in der Verantwortung des Betreibers, die Art der Überprüfung zu wählen. Die Prüfung ist so durchzuführen, dass die einwandfreie Sicherheitsfunktion im Zusammenwirken aller Komponenten nachgewiesen wird. Dies ist beim Anfahren der Ansprechhöhe im Rahmen einer Befüllung gewährleistet. Wenn eine Befüllung nicht praktikabel ist, so ist das Messsystem durch geeignete Simulation des Füllstandes, z.B. durch Schließen des Strahlenabschirmbehälters, zum Ansprechen des Grenzwertes zu bringen.

Die bei den Tests verwendeten Methoden und Verfahren müssen benannt und deren Eignungsgrad spezifiziert werden. Die Prüfungen sind zu dokumentieren.

Verläuft der Funktionstest negativ, muss das gesamte Messsystem außer Betrieb genommen werden und der Prozess durch andere Maßnahmen im sicheren Zustand gehalten werden.

10

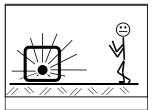
Strahlenschutz

10.1 Grundlagen und Richtlinien

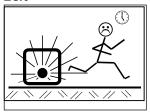
Um gesundheitliche Schädigungen beim Umgang mit den erforderlichen radioaktiven Stoffen auszuschließen, sind auf internationaler Ebene Grenzwerte für die höchstzulässige Strahlenexposition des Betriebspersonals festgelegt. Durch geeignete Maßnahmen bei Auslegung der Abschirmungen und Anordnung der Messeinrichtung an der Messstelle wird sichergestellt, dass bei sachgemäßem Verhalten die Strahlenexposition für das Personal unter dem maximal zulässigen Wert von 1mSv (100mrem) pro Jahr begrenzt wird.

Um den sachgemäßen Umgang und die Einhaltung der gesetzlichen Vorschriften sicherzustellen, muss das Unternehmen einen Strahlenschutzbeauftragten benennen, der für alle im Zusammenhang mit der Messeinrichtung auftretende Strahlenschutzfragen zuständig ist. Der Strahlenschutzbeauftragte wird den Umgang mit der radiometrischen Messeinrichtung überwachen und, auf den Betrieb der Einrichtung zugeschnittene Verhaltensregeln festlegen, die dann Grundlage einer Strahlenschutzanweisung sind. Die außerhalb der Abschirmung entstehenden Strahlenschutzbereiche müssen soweit sie begehbar sind - gekennzeichnet und abgeschrankt werden. Weitere Hinweise sollten die Überwachung der Verschlussfunktion der Abschirmung und Maßnahmen bei schweren Betriebsstörungen wie Brand oder Explosion betreffen. Besondere Vorkommnisse müssen in jedem Fall sofort dem Strahlenschutzbeauftragten gemeldet werden, der sich dann an Ort und Stelle über die Situation informiert und bei Beschädigungen, die Funktion oder Sicherheit beeinträchtigen können, unverzüglich geeignete Maßnahmen einleiten wird.

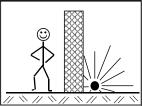
Der Strahlenschutzbeauftragte hat darüber zu wachen, dass die Vorschriften der Strahlenschutzverordnung eingehalten werden. Besonders wird hier auf die Verpflichtung zur Unterweisung anderer Mitarbeiter hingewiesen.


Nicht mehr benötigte radioaktive Stoffe müssen an eine staatliche Sammelstelle oder den Lieferanten ordnungsgemäß abgeliefert werden.

Grundsätzlich muss jeder Betriebsangehörige bestrebt sein, durch umsichtiges Verhalten und unter Beachtung der Strahlenschutzregeln die Strahlenexposition, auch innerhalb der zulässigen Grenzen, so gering wie möglich zu halten.


Die Summe der vom Körper aufgenommenen Strahlung wird durch drei Größen bestimmt, aus welchen auch die grundsätzlichen Strahlenschutzregeln abgeleitet werden können: Abstand, Zeit und Abschirmung.

10 Strahlenschutz Band 1


Abstand

Zeit

Abschirmung

Während der Nutzung

Damit ist der Abstand zwischen radioaktivem Strahler und menschlichem Körper gemeint. Die Strahlungsintensität (Dosisleistung) folgt – genau wie Licht – einem quadratischen Abstandsgesetz. Das bedeutet, bei Verdoppeln des Abstandes zum Strahler, dass sich die Dosisleistung auf ein Viertel verringert.

Folgerung:

Bei notwendigen Arbeiten in der Nähe von Einrichtungen, die radioaktive Stoffe enthalten, ist der größtmögliche Abstand zu halten. Dies gilt insbesondere für Personen, die nicht unmittelbar an dieser Arbeit beteiligt sind.

Hiermit ist die Aufenthaltszeit in der Nähe einer radiometrischen Messeinrichtung gemeint, während der die Strahlung auf den Körper einwirken kann. Die Strahlendosis wird um so größer, je länger die Strahlenexposition andauert.

Folgerung:

Erforderliche Arbeiten in der Nähe von radiometrischen Messeinrichtungen sind sorgfältig vorzubereiten und so zu organisieren, dass sie in kürzestmöglicher Zeit durchgeführt werden können. Die Bereitstellung der richtigen Werkzeuge und Hilfsmittel ist hierbei besonders wichtig.

Die Abschirmwirkung wird durch das den Strahler umgebende Abschirmmaterial erreicht. Da die Abschirmwirkung in einem exponentiellen Verhältnis zum Produkt aus Dicke und Dichte des Abschirmmaterials steht, sind Abschirmmaterialien mit hohem spezifischen Gewicht erforderlich. Eine ausreichend große Dimensionierung der Abschirmungen erfolgt bereits durch die Lieferfirma.

Folgerung:

Bei An- und Abbau der Abschirmung ist vorher sicherzustellen, dass der Strahlenaustrittskanal *verschlossen* ist.

Installations-, Abbau-, Umzugs-, Wartungs- und Prüfarbeiten, welche die radioaktiven Strahler und ihre Abschirmung betreffen können, dürfen nur unter Aufsicht des Strahlenschutzbeauftragten (Radiation Safety Officer) durchgeführt werden.

Für weitere Informationen wenden Sie sich bitte an BERTHOLD TECHNOLOGIES.

10.2 Montage der Abschirmung

10.2.1 Sicherheitsinformationen

Der Abschirmbehälter besteht aus einem mit Blei gefüllten, stabilen Gussgehäuse. Zum Verschließen des Strahlenaustrittskanals ist eine drehbare Blende eingebaut. Die Bedienung erfolgt von der Rückseite her über einen Knebel, der sowohl in offener als auch in geschlossener Stellung verriegelt werden kann. Das Verriegeln verhindert, dass der Strahlengang durch Unbefugte verschlossen bzw. geöffnet werden kann. Ebenfalls wird dadurch verhindert dass Unbefugte den Strahler entnehmen können.

Strahlenexposition während der Montage

Um die Strahlenexposition des Montagepersonals so gering wie möglich zu halten, darf die Abschirmung mit dem Strahler nur durch Personal montiert bzw. demontiert werden, das dazu autorisiert wurde und das vorher über alle Verhaltensregeln beim Umgang mit radioaktiven Stoffen unterwiesen worden ist. Die Ausführung der Arbeiten erfolgt unter Anleitung und Aufsicht des Strahlenschutzbeauftragten. Dabei ist sicherzustellen, dass der Verschluss der Abschirmung geschlossen und gesichert ist, damit unabgeschirmte Strahlung nicht austreten kann. Veränderungen oder Beschädigungen der Abschirmung müssen absolut vermieden werden.

Vibrationen

Ständige Vibrationen können das Blei in der Abschirmung lockern und im Extremfall sogar zermahlen. Dadurch ist dann sowohl die Abschirmwirkung als auch die Funktion der Abschirmung nicht mehr gewährleistet. Im schlimmsten Fall ist das Austreten von radioaktiver Substanz möglich. Ebenfalls kann sich bei ständigen Vibrationen der Strahlerhalter oder der Strahler lockern, wodurch ebenfalls sowohl die Funktion als auch die Abschirmwirkung beeinträchtigt wird.

Bei korrosiver Atmosphäre ist eine zusätzliche Schutzabdeckung aus einem geeigneten Material, z.B. aus Edelstahlblech, zu montieren oder die Abschirmung selbst muss in einem geeigneten Edelstahl ausgeführt werden. Entsprechende Ausführungen sind auf Anfrage bei BERTHOLD TECHNOLOGIES erhältlich.

HINWEIS

Je nach Betriebsbedingungen ist die Funktionsprüfung in angemessenen Zeiträumen, jedoch mindestens jährlich zu wiederholen.

10 Strahlenschutz Band

10.2.2 Strahlenexposition während der Montage der Abschirmung

Für Messeinrichtungen werden die Abschirmungen im Allgemeinen so ausgelegt, dass unabhängig davon, ob es sich um Punkt- oder Stabstrahler handelt und wie groß die Aktivität ist, die Grenze des Kontrollbereichs in einem vorgegebenen Abstand (in den meisten Fällen weniger als ein Meter) um die Abschirmung verläuft. Eine vereinfachte Berechnung der Strahlenexposition während der Montage der Abschirmung ist mit ausreichender Genauigkeit möglich mithilfe des auf dem Typenschild angegebenen Wertes der Dosisleistung, gemessen in 1m Abstand von der Abschirmung. Die Strahlenexposition D kann nach folgender Formel errechnet werden:

$$D = DLxtx4$$

D = akkumulierte Dosis während der Montage in μSv DL = Dosisleistung auf dem Typenschild der Abschirmung in $\mu Sv/h$ t = Zeitaufwand für die Montage mit der Abschirmung in h

Für die Durchführung der Arbeiten wie Montage der Abschirmung oder Betätigen des Verschlusses kann bei exakter Vorbereitung von einer Arbeitszeit von weniger als 20 Minuten ausgegangen werden.

Berechnungsbeispiel

DL =
$$3\mu Sv$$

t = 20min (1/3h)
D = 3 x 1/3 x 4 = $4\mu Sv/h$

Wird diese Dosis mit der zulässigen Jahresdosis von 1 mSv für beruflich nicht strahlenexponierte Personen verglichen, so dürfen diese Arbeiten 250-mal pro Jahr von ein und derselben Person ausgeführt werden.

10.2.3 Berechnung der Strahlenexposition

Bei der Vorbereitung von Arbeiten an radiometrischen Messeinrichtungen ist eine Vorausberechnung der wahrscheinlich zu erwartenden Strahlenexposition wichtig, da davon die erforderliche Verhaltensweise und notwendige Vorsichtsmaßnahmen abhängig gemacht werden.

Die Berechnungen sind einfach und mit ausreichender Genauigkeit durchzuführen, wenn das Nuklid und die Aktivität des verwendeten Strahlers bekannt sind. Diese Angaben können der zum Strahler gehörenden Dokumentation entnommen oder vom Typenschild auf der Abschirmung abgelesen werden.

Die genaue Berechnung der zu erwartenden Strahlenexposition für einen abgeschirmten Strahler erfolgt nach folgender Gleichung:

Dosis D =
$$\frac{A \times k \times T}{r^2 \times s}$$

Für A wird die Aktivität des Strahlers und für k die zugehörige spezifische Gammastrahlen-Konstante aus der nachstehenden Tabelle eingesetzt. Der Abstand zwischen Messpunkt und Strahler wird mit r eingegeben und die Aufenthaltszeit an dieser Stelle ist T. Für s gilt der Abschirmfaktor der verwendeten Abschirmung, welcher aus dem Informationsblatt der Abschirmung hervorgeht oder berechnet werden kann. Zur Berechnung der Dosisleistung beim Umgang mit einem unabgeschirmten Strahler wird s=1 gesetzt.

Nuklid	k	Dimensionen
Co-60	0.35	µSv x m²
Cs-137	0.09	h x MBq

Berechnungsbeispiel

Die Dosis in einem Abstand von 50cm von einem Co-60-Strahler mit einer Aktivität von 350MBq und einer Zeitspanne von 30min ist zu ermitteln. Der Strahler ist in eine Abschirmung eingebaut, die den Abschirmfaktor 30 aufweist:

Dosis D =
$$\frac{350 \text{MBq x } 0.35 \mu \text{Sv x m}^2 \times 0.5 \text{h}}{(0.5 \text{m})^2 \times \text{h x MBq x } 30} = 8.2 \mu \text{Sv}$$

10.3 Verschließmechanismus testen

Die Strahlenschutzverordnung schreibt vor, dass die Abschirmung einer regelmäßigen Funktionsprüfung und Wartung unterzogen wird und die Prüfung zu dokumentieren ist. Bei der Festlegung des Prüfintervalls für die regelmäßige Funktionsprüfung und Wartung der Strahlerabschirmung, sind die Umgebungs- und Einsatzbedingungen der Messeinrichtung, die gesetzlichen Bestimmungen und die Genehmigungsauflagen zu berücksichtigen. Die Funktionsprüfungen und Wartungen sind jedoch mindestens einmal jährlich durchzuführen.

Die Funktionsprüfung soll sicher stellen, dass der Verschließmechanismus korrekt funktioniert. Es muss überprüft werden:

- ob der Verschluss leichtgängig und frei beweglich ist
- ob der Verschließmechanismus an keiner Stelle im Drehbereich klemmt
- ▶ der Strahlengang vollständig verschlossen werden kann

Sollten Sie einen Fehler bemerkt oder Zweifel haben, wenden Sie sich bitte an die Serviceabteilung von BERTHOLD TECHNOLOGIES.

10.4 Sicherheitsvorkehrungen

Bereits bei der Planung für den Einsatz von radiometrischen Messeinrichtungen sind, wenn notwendig, bautechnische Maßnahmen vorzusehen, die den vorbeugenden Brandschutz gewährleisten. Hierbei ist z.B. zu berücksichtigen, dass sich keine leicht brennbaren Stoffe in der Nähe befinden sollten oder diese so abgedeckt oder geschützt werden, dass ein leichtes Übergreifen auf die radioaktiven Stoffe verhindert wird. § 52 schreibt vor, dass mit den für den Brandschutz zuständigen örtlichen Behörden alle erforderlichen Maßnahmen zu planen sind. Hier ist in erster Linie an die Feuerwehr gedacht, die über die Art und den Umfang der verwendeten radioaktiven Stoffe sowie den Verwendungsort informiert sein muss, damit sie im Brandfalle entsprechend vorbereitet eingreifen kann.

Bei der Aufstellung von Alarmplänen ist neben deutlichen Hinweisen auf eventuelle Besonderheiten der radiometrischen Messsysteme anzugeben, welches sachkundige oder autorisierte Personal (Strahlenschutzbeauftragter) zu benachrichtigen ist, sowie Adresse und Rufnummer der zuständigen Behörde.

10.5 Diebstahlsicherung

Radioaktive Stoffe oder Anlagen, die radioaktive Stoffe enthalten, müssen so gesichert sein, dass sie gegen den Zugriff von Unbefugten geschützt sind. Bei fest installierten Anlagen, die radioaktive Stoffe enthalten, ist die Sicherung gegen den Zugriff von Unbefugten im Allgemeinen bereits durch die fest angebaute Installation gegeben.

Werden Betriebsanlagen, in denen auch radiometrische Messeinrichtungen im Einsatz sind, für längere oder unbestimmte Zeit außer Betrieb genommen, so sollten die radioaktiven Strahler zusammen mit ihrer Abschirmung demontiert und bis zur Wiederverwendung sichergestellt werden.

Bei tragbaren Messeinrichtungen ist darauf zu achten, dass die Anlage niemals ohne Aufsicht gelassen werden darf oder bei Nichtbenutzung in einem Raum oder einem Behältnis aufbewahrt wird, das verschlossen werden kann und dem Zugriff von Unbefugten entzogen ist.

Dies gilt auch für Prüfstrahler mit geringen Aktivitäten, wie sie z.B. zur Funktionskontrolle von Dosisleistungsmessgeräten verwendet werden können.

Wird festgestellt, dass radioaktive Stoffe abhandengekommen sind, so sind unverzüglich der Strahlenschutzverantwortliche und die zuständige Aufsichtsbehörde davon in Kenntnis zu setzen.

Bei Diebstahl ist sofort neben der Aufsichtsbehörde auch die Polizei einzuschalten (§ 71).

10 Strahlenschutz Band

10.6 Unfälle, Verlust, Schaden, Feuer, Diebstahl

Beachten Sie in diesen Situationen folgende Grundprinzipien, die für Ihre Gesundheit und Sicherheit unerlässlich sind: Zeit, Abstand und Abschirmung (siehe auch *Seite 1-139*). Sollte einer der oben erwähnen Vorfälle eintreten, dann ergreifen Sie bitte folgende Maßnahmen:

- Begrenzen Sie den Zugang zu diesem Bereich.
- Melden Sie den Vorfall der Behörde.
- Informieren Sie BERTHOLD TECHNOLOGIES.

Ordnungsgemäßer Umgang und Entsorgung der möglicherweise undichten radioaktiven Strahler oder kontaminierten Ausrüstungsteile müssen mit den Aufsichtsbehörden abgestimmt werden.

10.6.1 Verhalten bei Stör- und Unfällen

Die Strahlenschutzverordnung definiert einen Störfall als einen Ereignisablauf, bei dessen Eintreten der Betrieb einer Anlage aus sicherheitstechnischen Gründen nicht fortgeführt werden kann.

Unter Störfall ist zu verstehen, dass eine für den sicheren Betrieb der Einrichtung notwendige Vorrichtung, wie z.B. der Verschluss des Nutzstrahlenbündels, nicht mehr wie vorgesehen funktioniert.

Ein Unfall ist dagegen ein Ereignisablauf, bei welchem Personen einer die Grenzwerte übersteigenden Strahlenexposition ausgesetzt werden könnten oder sogar Kontaminationen und Inkorporationen von radioaktiven Stoffen möglich wären.

Störfälle und Unfälle sind sicherheitstechnisch bedeutsame Ereignisse, bei denen unverzüglich geeignete Maßnahmen eingeleitet werden müssen mit dem Ziel, Gefahren von Personen und Sachgütern abzuwenden oder auf ein Mindestmaß zu beschränken.

Wichtig ist deshalb, dass für den jeweiligen Umgang entsprechende Überlegungen angestellt und mit dem betroffenen Betriebspersonal durchgesprochen werden, damit es auf mögliche Störfälle oder Unfälle so vorbereitet ist, dass durch richtiges Verhalten die schädlichen Auswirkungen so gering wie möglich gehalten werden.

Besteht der Verdacht auf einen Unfall oder Störfall, so ist sofort der Strahlenschutzbeauftragte zu verständigen, der dann an Ort und Stelle die Situation überprüft und alle weiteren Maßnahmen trifft, um jede unnötige Strahlenexposition des Betriebspersonals zu verhindern.

Der Strahlenschutzbeauftragte wird dann abgestufte Maßnahmen einleiten und Mitteilung an die zuständige Behörde machen und sich unter Umständen auch Informationen bei dem Hersteller einholen.

Störfall

Unfall

54733-20BA1S 05.2025 Band 1 10 Strahlenschutz

i WICHTIG

Die Bergung von Abschirmungen und Strahlern nach Stör- und Unfällen darf grundsätzlich nur nach der Anweisung der Behörde erfolgen.

Es wäre denkbar, bei den Sofortmaßnahmen zweckmäßigerweise in folgender Reihenfolge vorzugehen:

- ▶ Lokalisieren Sie den Strahler.
- Überprüfung Sie die Funktion der Abschirmung.
- ▶ Überprüfung Sie die Wirksamkeit der Abschirmung durch Messung der Dosisleistung.
- Kennzeichnen Sie die Kontrollbereiche und sichern Sie diese durch Abschrankung.
- ▶ Schirmen Sie den Strahler ab.
- ► Protokollieren Sie den Vorfall und schätzen Sie eventuell vorgekommene Strahlenexposition beteiligter Personen ab.

Bei Verdacht auf Beschädigung der Strahlerkapsel wären darüber hinaus noch folgende Punkte zu berücksichtigen:

- ▶ Vermeiden Sie eine Kontamination.
- ► Fassen Sie den Strahler mit dem Werkzeug (z.B. Zange oder Pinzette) und wickeln Sie beides (Strahler und Werkzeug) in eine Plastiktüte ein.
- ► Schirmen Sie den Strahler über Betonwand, Stahl- oder Bleiplatte ab.
- ▶ Prüfen Sie die Umgebung auf Kontaminationsfreiheit.
- ► Sorgen Sie für vorschriftsmäßige Sicherstellung des radioaktiven Abfalls (durch Landessammelstelle).

Bei einer Undichtheit eines Strahlers und bei dem Verdacht auf Dosisüberschreitungen ist die zuständige Behörde (z.B. Gewerbeaufsichtsamt) zu verständigen.

Der Eintritt eines Unfalls, eines Störfalls oder eines sonstigen sicherheitstechnisch bedeutsamen Ereignisses ist der Aufsichtsbehörde mitzuteilen und, falls dies erforderlich sein sollte, auch der für die öffentliche Sicherheit und Ordnung zuständigen Behörde. Die Vorgehensweise kann mit der Firma BERTHOLD TECHNOLOGIES abgesprochen werden.

10 Strahlenschutz Band 1

10.7 Abschirmung und Strahler

Die Abschirmungen besitzen weder Verschleißteile noch mechanisch bewegte Teile, die unter normalen Betriebsbedingungen eine Wartung erfordern. Aus Sicherheitsgründen muss es jedoch jederzeit möglich sein, das Nutzstrahlenbündel verschließen zu können. Eine Funktionsprüfung ist deshalb in angemessenen Abständen von max. einem Jahr durchzuführen (siehe *Kapitel 10.3*). Werden dabei Fehler an der Abschirmung oder ein schwergängiger Verschluss festgestellt, so muss dies sofort dem Strahlenschutzbeauftragten gemeldet werden. Lässt sich das Problem nicht auf einfache Weise durch Reinigen oder ähnliche Maßnahmen lösen, so darf mit der Anlage nicht weitergearbeitet werden, bis eine sachkundige Reparatur oder Instandsetzung erfolgt ist.

Solange die Abschirmung keine schwerwiegenden mechanischen Beschädigungen oder starke Korrosionen aufweist, wird der eingebaute Strahler so gut geschützt, dass er keiner Beanspruchung ausgesetzt ist. Bei Überprüfung oder Austausch des Strahlers sind die Strahlenschutzhinweise zu beachten.

Der verwendete radioaktive Strahler und der Funktionsbereich des Messsystems lassen eine Betriebsdauer von über 10 Jahren zu. Die Nutzungsdauer radioaktiver Quellen sollte sich an der im Dichtheitszertifikat empfohlenen Verwendungsdauer orientieren. Eine Strahlererneuerung kann auch früher notwendig werden, wenn die sich im Laufe der Zeit vergrößernden statistischen Schwankungen unzulässig groß werden und ein Ausgleich durch Erhöhung der Zeitkonstante, z.B. aus regelungstechnischen Gründen, nicht mehr zulässig ist.

i wichtig

Nach jedem Strahlertausch ist ein Leerabgleich erforderlich!

Hinweise über die Ausführung von Strahler und Abschirmung sind den technischen Dokumentationen und dem Typenschild (*Bild 10-1*) zu entnehmen.

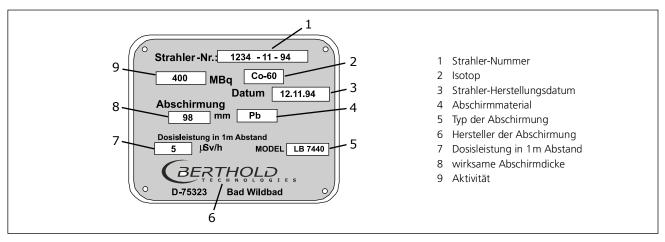


Bild 10-1 Typenschild

Band 1 10 Strahlenschutz

Wird eine Erneuerung des Strahlers notwendig, so muss bei der Nachbestellung die Strahlernummer des vorher verwendeten Strahlers angegeben werden. Diese Strahlernummer besteht aus drei Zahlengruppen wie z.B.:

1234 - 11 - 94

Dabei ist die erste Zahlengruppe eine fortlaufende Nummer, die zweite Gruppe kennzeichnet den Herstellungsmonat (hier: November) und die dritte das Herstellungsjahr (hier: 1994). Sie ist auf dem Typenschild der Abschirmung sowie auf dem Dichtheitszertifikat angegeben, das zu jedem Strahler gehört.

10.8 Dichtheitsprüfung

Gemäß den Auflagen der Genehmigung(en), müssen regelmäßig wiederkehrende Dichtheitsprüfungen durchgeführt werden. Diese Prüfungen sind von autorisierten Sachverständigen, oder in Absprache mit der Behörde auch durch den Hersteller, durchzuführen. Zur Durchführung dieser Prüfung sind die entsprechenden Strahler-Unterlagen bereitzustellen.

10.8.1 Erforderliche Unterlagen

- Bestandsverzeichnis der zu prüfenden Strahler mit Angabe der bisherigen Dichtheitsprüfungen.
- Strahler-Zertifikat mit folgenden Angaben:
 - Nuklid, Aktivität, Bezugsdatum, physikal.-chemische Form
 - Beschreibung der Umhüllung und Art der Abdichtung
 - Beanspruchbarkeit gegen mechanische und thermische Einwirkungen bzw. Klassifikation der Strahlerbauart
- Angaben über Ort, Verwendungszweck sowie über die betriebsüblichen maximalen mechanischen und thermischen Beanspruchungen.
- Ist der Strahler in einer Vorrichtung eingebaut, so ist eine Zeichnung beizufügen, aus der die Lage des Strahlers und aller zum Schutz gegen äußere Einflüsse dienenden Teile eindeutig hervorgehen. Es sollten Vorschläge für das günstigste Prüfverfahren vorliegen, z.B. durch Angabe von Ersatzprüfflächen und ggf. der notwendigen Manipulationen, wie die Prüfung ohne Beeinträchtigung der Funktionsfähigkeit der Anlage oder Vorrichtung zur erreichen ist.
- Bescheinigung einer Abnahmeprüfung durch den Hersteller.

10 Strahlenschutz Band 1

Ersatzprüfflächen

für Punktstrahlerabschirmungen LB 744X

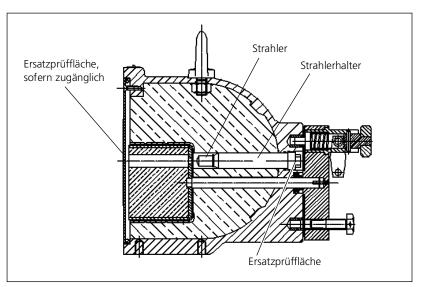


Bild 10-2 Ersatzprüffläche an Punktstrahlerabschirmungen

Drehen Sie den Knebel zur Prüfung in die waagerechte Position.

Die Ersatzprüffläche ist der Kopf bzw. der sichtbare Rand des Strahler-Halters. Ist der Deckel ebenfalls zugänglich, dann muss auch dort gewischt werden.

Strahlertausch

WICHTIG

Der Strahlertausch muss von einer Fachfirma durchgeführt werden die über eine entsprechende Servicegenehmigung für radioaktive Stoffe verfügt.

Strahlenexposition beim Strahlertausch

Vor dem geplanten Ein- oder Ausbau von Punkt- oder Stabstrahlern ist es wichtig, die mögliche Strahlenexposition zu ermitteln. Eine genaue Berechnung ist mit der Kapitel 10.2.3 beschriebenen Gleichuna möalich.

Die voraussichtliche Arbeitszeit ist dazu zweckmäßigerweise aufzuteilen in die Tätigkeit in unmittelbarer Nähe der Abschirmung während des Aus- und Einbaus, sowie der Zeit, in der mit dem unabgeschirmten Strahler gearbeitet wird. Dazu sind die Dosis während der Arbeiten in der Nähe der Abschirmung und die Dosis während der Arbeitszeit mit dem unabgeschirmten Strahler getrennt zu ermitteln und zu addieren.

Auch hier ist eine stark vereinfachte abschätzende Berechnung möglich, wenn die Arbeiten so gut vorbereitet wurden, dass von einem mittleren Abstand von 0,5m für die Ganzkörperbestrahlung und der Zeit von 6 Minuten (= 1/10 Stunde), in der mit dem unabgeschirmten Strahler umgegangen wird, ausgegangen werden kann. Mit diesen Annahmen kann die Berechnung der Strahlenexposition für unterschiedliche Aktivitäten (A) abschätzend wie folgt durchführt werden:

Dosis $D = A \times 0.15$ bei Co-60

Dosis $D = A \times 0.04$ bei Cs-137

Hierbei ist die Aktivität in MBq einzusetzen; die Dosis errechnet sich in μSv.

Bei mehrteiligen Stabstrahlern ist die abgeschätzte Strahlenexposition mit der Anzahl der Strahlerteile zu multiplizieren.

ii wichtig

Mithilfe eines direkt ablesbaren Taschendosimeters muss die genaue Strahlenexposition während dieser Tätigkeit gemessen werden, auch wenn die Strahlenexposition voraussichtlich unter der Nachweisgrenze der Dosimeter liegt.

11 Strahlertausch Band 1

Berechnungsbeispiel

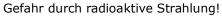
Ein einteiliger Stabstrahler mit einer Aktivität von 400MBq (ca. 11mCi) ist auszutauschen. Die vorher gemachten Annahmen bezüglich Abstand und Zeit sollen zutreffen und es kann entsprechend der vorstehenden Gleichung wie folgt abgeschätzt werden:

$$D = 400 \times 0.15 = 60 \mu Sv$$

Die Strahlenexposition in der Nähe der Abschirmung wurde vorher mit $10\mu Sv$ ermittelt. Die gesamte Strahlerexposition einschließlich An- und Abbau kann mit $70\mu Sv$ für einen einteiligen Strahler abgeschätzt werden.

Treffen die vorherigen Annahmen nicht zu, sind die Berechnungen natürlich entsprechend zu korrigieren. In der Praxis kann es sich nur um eine andere Arbeitszeit handeln, die das Ergebnis der Dosisberechnung proportional beeinflusst.

54733-20BA1S 1 – 152 05.2025


11.2 Punktstrahlertausch

In diesem Kapitel wird der Austausch von Punktstrahlern an folgenden Abschirmungen beschrieben:

- IB 7440
- LB 7442
- LB 7444
- LB 7445
- LB 7446

Der Austausch von radioaktiven Strahlern muss unter Berücksichtigung der geltenden Vorschriften unter der Aufsicht des Strahlenschutzbeauftragten (Radiation Safety Officers) durchgeführt werden

Bei Austausch eines Strahlers muss kurzzeitig mit dem unabgeschirmten Strahler umgegangen werden. Eine erhöhte Strahlendosis ist gesundheitsschädlich.

Daher muss bei dieser Tätigkeit ein Personendosimeter getragen werden, damit die tatsächliche Strahlenexposition während dieser Tätigkeit dokumentiert werden kann. Es ist außerdem eine Abstimmung mit dem für den Betrieb zuständigen Strahlenschutzbeauftragten erforderlich.

WICHTIG

Für Deutschland gilt:

Der Strahlertausch durch den Kunden ist nur möglich wenn:

- 1) die entsprechende Fachkunde vorhanden ist
- 2) die Tätigkeit den Strahler zu tauschen von der zuständigen Behörde explizit genehmigt ist. Ob Sie im Besitz dieser Bevollmächtigung sind, ist in Ihrer "Genehmigung zum Umgang mit radioaktiven Stoffen" nachzulesen.

Punktstrahler sind auf Strahlerhaltern befestigt, die in die Abschirmung eingeschraubt werden und den Strahler im Zentrum der Abschirmung positionieren.

Voraussetzung für diese Arbeiten ist die genaue Kenntnis der Konstruktion der Abschirmung; entsprechende Zeichnungen müssen deshalb zur Verfügung stehen.

11 Strahlertausch Band 1

Vorbereitung

Alle notwendigen Arbeiten sind so vorzubereiten, dass der Umgang mit dem unabgeschirmten Strahler mit einem Minimum an Zeitaufwand möglich ist. Anhand einer Zeichnung der Abschirmung ist die zweckmäßigste Vorgehensweise zu planen; folgende Werkzeuge sind bereitzuhalten:

- Sechskant-Steckschlüssel in den erforderlichen Größen.
- Zwei Zangen zum Fassen von Strahler und Strahlerhalter (z.B. Polygrip- oder Wasserpumpenzange).

Schranken Sie einen Bereich entsprechend der Aktivität des Strahlers ab. Stellen Sie sicher, dass Unbefugte diesen Bereich nicht betreten können.

Soweit es die Platzverhältnisse zulassen, kann der Austausch des Strahlers an der noch an der Messstelle montierten Abschirmung erfolgen. Bringen Sie dazu den neuen Strahler in seiner Transportabschirmung in die Nähe.

Bereiten Sie einen geeigneten sauberen Platz, möglichst mit einer Hilfsabschirmung (Abschirmbehälter, Bleiziegel, Betonsteine o.ä.) vor, an dem später der Strahlerhalter und der Strahler auf einem Stück Papier als Schutz gegen Verschmutzung kurzzeitig abgelegt werden kann.

Je nach Konstruktion müssen Sie entweder das Schloss an dem Verschluss der Abschirmung öffnen und den Knebel in die Mittelstellung zwischen AUF und ZU drehen, bis der Sechskant-Schraubkopf des Strahlerhalters sichtbar ist, oder Sie müssen die Verschlussplatte entfernen, damit Sie den Strahlerhalter herausschrauben können.

Vorgehensweise beim Strahlertausch

- ▶ Öffnen Sie das Vorhängeschloss (2) an der Abschirmung (1).
- ► Ziehen Sie ggf. die Sicherungsschraube (5) aus dem Knebel heraus.
- ➤ Ziehen Sie den Knauf (3) und drehen Sie den Knebel (4) um 90° nach rechts in die Mittelstellung zwischen AUF und ZU. Jetzt ist der Sechskant-Schraubkopf des Strahlerhalters sichtbar.

Band 1 11 Strahlertausch

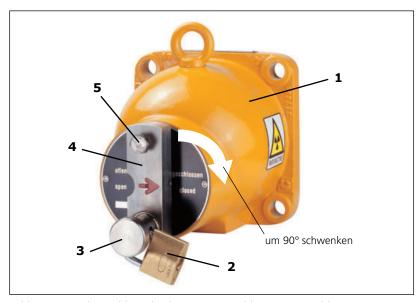


Bild 11-1 Punktstrahler-Abschirmung, Strahlengang geschlossen

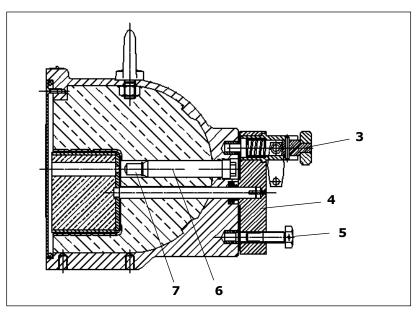


Bild 11-2 Schnittzeichnung Strahlerhalter, Strahlengang offen

⚠ VORSICHT

Gefahr durch radioaktive Strahlung!

Der Strahler darf nicht aus seiner Abschirmung ausgebaut werden und unabgeschirmt bleiben!

Um eine zu hohe Teilkörperdosis zu vermeiden, darf der Strahler nicht mit den Fingern berührt werden. Fassen Sie den Strahler nur mit einem Werkzeug an, mit dem sie ihn leicht und sicher greifen können. Halten Sie den Strahler weit vom Körper entfernt und legen Sie ihn möglichst hinter einer Hilfsabschirmung ab.

11 Strahlertausch Band 1

Strahler aus Abschirmung entnehmen

► Schrauben Sie den Strahlerhalter (6) zusammen mit dem Strahler (7) mit einem Steckschlüssel (SW 12) heraus.

Schrauben Sie den Strahler mit einem Steckschlüssel (SW 10) vom Strahlerhalter ab. Halten Sie den Strahlerhalter dazu mit einem zweiten Steckschlüssel (SW 12) fest.

WICHTIG

Nutzen Sie bei diesen Arbeiten das Gehäuse der Abschirmung als Hilfsabschirmung zwischen Strahler und Körper.

► Fassen Sie den Strahler mit einer Zange und deponieren Sie ihn möglichst sofort in einer Transportabschirmung oder einer anderen Abschirmung.

WICHTIG

Achten Sie darauf, dass keine Verwechslung mit dem neuen oder anderen Strahlern vorkommen kann.

► Falls erforderlich, säubern und fetten Sie das Gewinde am Strahlerhalter und an der Abschirmung ein.

► Nehmen Sie den neuen Strahler mithilfe der Zange aus der Transportabschirmung heraus und schrauben Sie ihn zusammen mit der Sicherungsscheibe fest auf den Strahlerhalter auf (Anzugsmoment: 3,5Nm).

- ► Setzen Sie den Strahlerhalter mit Strahler wieder in die Abschirmung ein und schrauben Sie ihn mit dem Steckschlüssel fest (Anzugsmoment: 44Nm).
- Prüfen Sie die einwandfreie Funktion AUF/ZU.
- ➤ Schließen Sie die Transportabschirmung wieder sorgfältig, nachdem Sie sichergestellt haben, dass der nicht mehr benötigte Strahler wie vorgesehen eingesetzt wurde.
 - Tauschen Sie das Typenschild an der Abschirmung aus bzw. bringen Sie die neue Strahlernummer an.
- ► Kalibrieren Sie das System neu (siehe *Band 3, "Bedienung mit HART*®-*Kommunikator"*)

i wichtig

Die besonderen Vorschriften für Kennzeichnung und Rücktransport der Abschirmung zur Lieferfirma sind zu beachten. Im Zweifelsfall kann der Strahlertransportbeauftragte von BERTHOLD TECHNOLOGIES befragt werden.

Der Punktstrahlertausch ist damit abgeschlossen.

Neuen Strahler einbauen

Typenschild austauschen

1 - 156

54733-20BA1S 05.2025

Strahlerabgabe

Generell hat jedes Land ein Depot, an welchem radioaktives Material abgegeben werden kann.

Wenn Sie jedoch radioaktives Material an uns zurücksenden wollen, müssen die internationalen Vorschriften, ADR und GGVSE, für den Transport, Beschriftung und Dosisleistungen des radioaktiven Materials beachtet werden, sowie die Vorschriften des jeweiligen Landes. Diese Vorschriften zu erfüllen, obliegt der vollen Verantwortlichkeit des Absenders.

Beachten Sie Folgendes:

- Dosisleistung an der Oberfläche der Verpackung: < 2000 µSv/h.
- Dosisleistung in einem Abstand von 1m von der Oberfläche der Verpackung: <100µSv/h.
- Kennzeichnung der UN-Nummer mit dem Hinweis für Gefahrgut auf jedem Paket.
- Beförderungspapiere mit korrekter Beschreibung des Inhalts und Unfallmerkblatt in Übereinstimmung mit den ADR-Vorschriften sind erforderlich.
- Verpackung muss mit den gültigen ADR-Vorschriften übereinstimmen.

Bei allen Fragen zum Strahlertransport oder zur Strahlerrücknahme wenden Sie sich bitte an unseren Vertriebsaußendienst, bzw. unsere Vertretung.

WICHTIG

Der Transport radioaktiver Stoffe unterliegt in vielen Ländern der Genehmigungspflicht durch die Behörde. Die Rücksendung darf deshalb nur nach vorheriger Auftragsbestätigung und Freigabebestätigung von BERTHOLD TECHNOLOGIES erfolgen.

Insbesondere möchten wir Sie auf folgende Punkte hinweisen:

- Radioaktives Material und deren Abschirmungen dürfen in keiner Weise beschädigt sein und müssen eine gültige Dichtheitsprüfbescheinigung haben. Die Dichtheitsprüfbescheinigung vor Ankunft des radioaktiven Materials in Deutschland darf nicht älter als 6 Monate sein. Eine Ausnahme ist dann möglich, wenn eine PTB-Bescheinigung vorhanden ist, in der bestätigt wird, dass die Gültigkeit der Prüftermine verlängert worden ist.
- Wenn sie radioaktive Quellen mit Isotop Am-241 oder Cm-244 zurückschicken, muss die Special Form-Bescheinigung beigefügt sein.
- Es ist unumgänglich, dass radioaktives Material, das uns geschickt wird, ausreichend mit Ihrem Namen und Adresse gekennzeichnet ist.
 Sofern Ihnen ein Angebot vorliegt, ist ebenfalls unsere Angebotsnummer anzugeben.
- Radioaktives Material kann nur zurückgesandt werden, nachdem Sie die Erlaubnis von BERTHOLD TECHNOLOGIES erhalten haben. Wir senden Ihnen gern ein Angebot über die entstehenden Rücknahmekosten zu.
- Vorab ist BERTHOLD TECHNOLOGIES über den Rücktransport in Kenntnis zu setzen. Radioaktives Material, das an Berthold ohne vorherige Nachricht gesandt wurde, wird von BERTHOLD TECHNOLOGIES nicht angenommen. Eventuell dabei entstehende Lagerkosten gehen zulasten des Lieferanten.
- Die Strahlerabgabe-Erklärung und die Dichtheitsbescheinigung sind mit den Bestellunterlagen an BERTHOLD TECHNOLOGIES zu schicken. Das Formular für die Strahlerabgabe-Erklärung erhalten Sie von BBERTHOLD TECHNOLOGIES auf Anfrage.

Notizen:

Änderungen im Zuge technischer Weiterentwicklung vorbehalten.			

Sprache: Deutsch

Rev.-Nr.: 06

© BERTHOLD TECHNOLOGIES GmbH & Co. KG 05.2025

BERTHOLD TECHNOLOGIES GmbH & Co. KG

Calmbacher Str. 22 D-75323 Bad Wildbad Germany www.Berthold.com Printed in Germany

Band 2 senseries installieren

1

Systembeschreibung

1.1 Messsystem

1.1.1 Messanordnung

Das Messsystem SENSseries LB 480 ist ein Detektor, der je nach Ausführung für verschiedene Messaufgaben einsetzbar ist:

- Füllstandsmessung
- Grenzwertüberwachung
- Dichtemessung

Das Messsystem SENSseries LB 480 gibt es in folgenden Ausführungen:

- Punktdetektor CrystalSENS (NaI 50/50)
- Punktdetektor SuperSENS (Szintillator 150/150)
- Stabdetektor UniSENS (Länge 0,5 bis 2m in 50cm-Stufen)
- Stabdetektor TowerSENS (Länge 3 bis 8m in 1m-Stufen)

Das Messsystem arbeitet nach dem Prinzip der radiometrischen Messmethode, d.h., die Absorption von Gammastrahlung durch das Messprodukt wird genutzt. Um einen optimalen Messeffekt bei minimaler Strahleraktivität zu erreichen, wird für die jeweilige Messstelle die günstigste Messgeometrie ermittelt und die Auslegung des Strahlers darauf abgestimmt.

Das Messsystem SENSseries LB 480 ist ein Kompaktdetektor, der die erforderlichen Komponenten Szintillationszähler, Stromversorgung sowie die gesamte Auswerteelektronik in einem Gehäuse enthält.

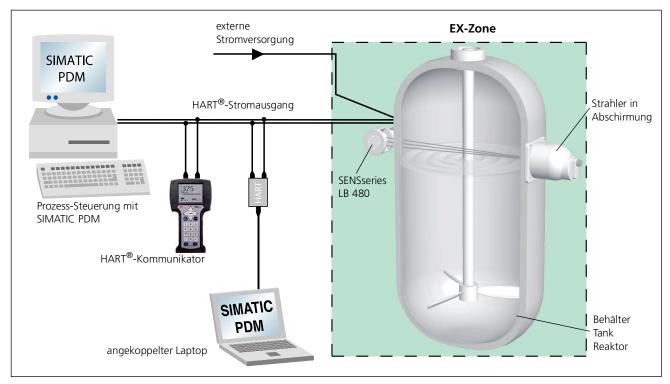


Bild 1-1 Messanordnung

1.1.2 Detektorkommunikation

Kommunikation mit dem PLS¹

Die Kommunikation mit Anzeige-, Auswerte- und Steuergeräten erfolgt über eine 2-adrige $\mathsf{HART}^{\$}\text{-Strom-Schnittstelle}$ mit aufmoduliertem digitalem Stromsignal (FSK-Modulation der Stromsignale nach Standard Bell-202).

Die Füllstands-Messwerte werden als potentialfreies $4-20\,\text{mA-Stromsignal}$ an das Prozessleitsystem geliefert.

Konfigurieren und Überwachen

Die Konfiguration, Parametrierung und Kalibrierung der Detektoren sowie die Ausgabe und Anzeige digitaler Messgrößen kann entweder

- über ein Handheld-Terminal, z.B. den 375 Field Communicator von Emerson Process Management GmbH & Co. OHG, oder
- mit PC und einer für den Detektor geeigneten Bedienoberfläche, wie z.B. der Software SIMATIC PDM erfolgen.

Der Band 3 beschreibt die Bedienung mit HART®-Kommunikator.

^{1.} PLS = Prozessleitsystem

1.1.3 Messgeometrien

Hard- und Software des Messsystems SENSseries LB 480 erlauben eine Anpassung an unterschiedlichste Messgeometrien und Messaufgaben. Deshalb müssen bei der Inbetriebnahme Einstellungen und Parameter des Messsystems sorgfältig auf die jeweilige Messaufgabe abgestimmt werden.

Inbetriebnahmeprotokoll

Wichtige Parameter dürfen später nicht mehr verändert werden, um eine zuverlässige Funktion zu gewährleisten. Es ist deshalb unbedingt erforderlich, dass Inbetriebnahme und eventuelle Änderungen der Einstellungen nur von Personen vorgenommen werden, die mit der Funktion des Systems vertraut sind. Die genaue Kenntnis dieser Bedienungsanleitung und sorgfältige Beachtung aller darin enthaltenen Hinweise ist Voraussetzung dafür. BERTHOLD TECHNOLOGIES empfiehlt deshalb, alle Einstellungen in einem Inbetriebnahmeprotokoll zu dokumentieren.

Projektierung

Bei der Projektierung wird je nach Messaufgabe die dafür günstigste Systemkonfiguration ausgewählt. Deshalb sind die jeweils zugehörigen Projektierungsunterlagen zu beachten und zu berücksichtigen.

1.2 SENSseries-Hardware

1.2.1 Detektor

Das Messsystem SENSseries LB 480 besteht aus einem Detektor und der Auswerteeinheit, die in einem stabilen Edelstahlgehäuse untergebracht sind.

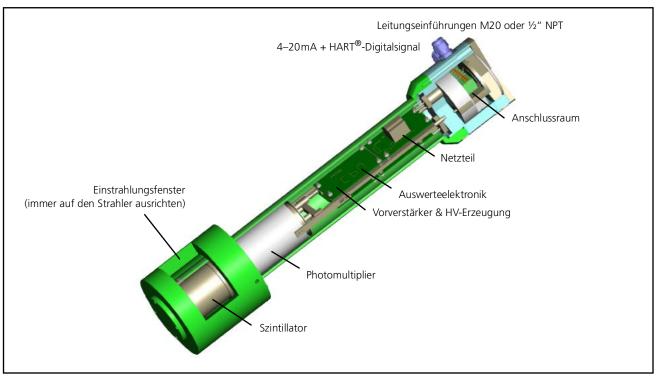


Bild 1-2 Aufbau der SENSseries LB 480

Komponente	Beschreibung
Szintillator	Detektieren von Gammastrahlung.
Photomultiplier, Vorverstärker, HV-Erzeugung und Auswerteelektronik	Umwandlung der Lichtblitze in elektrische Signale, Umrechnung in Füllstand, Dichte oder Grenzwert.
Netzteil (Stromversorgung)	Netzteil in zwei Ausführungen: 100V bis 240V _{AC} 24V _{DC}
Anschlussraum	Hier befinden sich alle Anschlussklemmen, die zur Installation des Detektors notwendig sind. Detaillierte Informationen finden Sie in <i>Kapitel 3</i> ab <i>Seite 2-195</i> .
Gewinde der Leitungseinführungen	4 Stück M20 (ATEX) oder 4 Stück ½" NPT (FM/CSA) zur Durchführung der Anschlusskabel.

Auswerteelektronik

Detektorkommunikation

Steuerung und Verarbeitung der Signale erfolgen über die Auswerteelektronik. Das 4–20 mA-Messsignal wird über ein 2-adriges Kabel zum PLS (Prozessleitsystem) geleitet (Klemmen 15 und 16).

Das Messsystem SENSseries LB 480 verwendet das $HART^{\circledR}$ -Protokoll zur Kommunikation. Die Konfiguration, Parametrierung und Kalibrierung der Detektoren sowie die Ausgabe und Anzeige digitaler Messgrößen kann entweder:

- über ein Handheld-Terminal, z.B. den *375 Field Communicator* der Emerson Process Management GmbH & Co. OHG, oder
- mittels PC mit FDT-Rahmenapplikation oder
- mittels PC und der Software SIMATIC PDM erfolgen.

Elektronikzugang

Der Detektor ist an der Oberseite mit einem abnehmbaren Gehäusedeckel verschlossen. Dieser kann nach dem Aufschrauben der Innensechskantschrauben abgenommen werden.

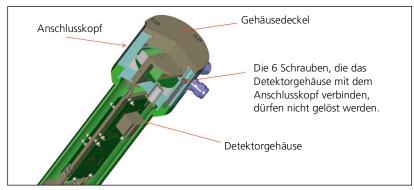


Bild 1-3 Detektorgehäuse mit Anschlusskopf

Zerfallskompensation

Für die automatische Zerfallskompensation ist der Detektor mit einer kondensatorgepufferten Echtzeituhr ausgerüstet. Der Kondensator puffert die Echtzeituhr für ca. eine Woche. Geht die Pufferung verloren, startet die Echtzeituhr mit dem letzten abgespeicherten Datum, an dem der Detektor vom Netz versorgt wurde. Eine Meldung weist darauf hin, dass Sie das Datum aktualisieren müssen.

1.2.2 Strahler

Die Strahler sind nicht Bestandteil des Messsystems SENSseries LB 480. Sie sind gesondert mit den jeweiligen Abschirmungen und Halterungen von BERTHOLD TECHNOLOGIES zu beziehen.

Radioaktive Strahler für industrielle Anwendungen sind grundsätzlich "umschlossene radioaktive Stoffe", die in eine stabile Kapsel aus Titan oder Edelstahl dicht eingeschweißt sind, sodass die radioaktive Substanz nicht austreten kann. Kontaminationen sind dadurch ausgeschlossen. Außerdem ist bei den hier verwendeten Strahlern eine Aktivierung des Messgutes aus physikalischen Gründen nicht möglich.

Folgende Strahlenguellen werden zur Messung eingesetzt:

- Co-60 emittiert Gammastrahlung mit einer Energie von 1,17 bzw. 1,33 MeV. Es wird als stab- oder punktförmige Quelle geliefert. Der Einfluss von Störungen durch Gasdichteschwankungen und schwankende Wandansätze ist geringer als bei Cs-137. Die Halbwertszeit beträgt 5,27 Jahre.
- Cs-137 emittiert Gammastrahlung mit einer Energie von 0,66 MeV. Es wird meist als punkt-, in manchen Fällen als stabförmige Quelle geliefert. Die Halbwertszeit von Cs-137 liegt bei rund 30 Jahren.

1.3 Messprinzip

Als Messprinzip dient die Durchstrahlmethode, bei der die physikalischen Gesetze der Absorption von Strahlung durch Materie ausgenutzt werden. Der sich daraus ergebende Messeffekt ist das Verhältnis I/I_0 zwischen der ungeschwächten Strahlung I_0 und der durch den Messstoff geschwächten Strahlung I.

Es besteht folgender mathematischer Zusammenhang:

$$I = I_0 \times e^{-\mu \times \rho \times d}$$

Aus der Gleichung ist ersichtlich, dass bei gegebenem Strahler und dem zugehörigen Massenschwächungskoeffizienten μ der Messeffekt nur durch die Produktdichte ρ und den Messweg d bestimmt wird.

Da der Messweg konstant ist und mögliche Produktdichte-Änderungen ab einem bestimmten Messweg aufgrund der exponentiellen Zusammenhänge ebenfalls keinen Einfluss mehr haben können, ist diese Messmethode von allen chemischen und praktisch auch allen physikalischen Eigenschaften des Messstoffs unabhängig. Aus diesen Gründen bietet das radiometrische Messprinzip hohe Zuverlässigkeit und Wartungsfreiheit.

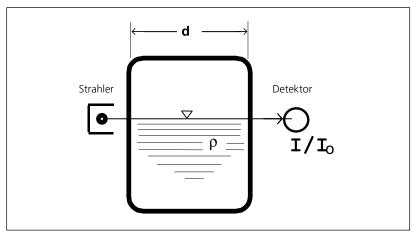


Bild 1-4 Messprinzip

1.4 Messanordnungen

Um einen bestimmten Messbereich kontinuierlich erfassen zu können, muss eine Messanordnung realisiert werden, bei der die Abmessungen von Strahler und Detektor eine Geometrie bilden, die ein entsprechend großes Messfeld erfasst. Dafür gibt es unterschiedliche Möglichkeiten, die nachstehend beschrieben werden.

Welche dieser Anordnungen zum Einsatz kommt, hängt von der Größe des Messbereichs und der sich aus der Messaufgabe ergebenden Messgeometrie ab. Außerdem können bauliche Gegebenheiten sowie kundenspezifische Erfordernisse Einfluss auf die Geräteauswahl haben.

Die entsprechenden Festlegungen erfolgen bereits bei Projektierung und sind später bei Montage und Inbetriebnahme für jede Messstelle besonders zu beachten.

Punktstrahler / Punktdetektor-Anordnung für Grenzschalter

Für die Grenzwertüberwachung, z.B. um das Überlaufen beim Befüllen eines Behälters zu vermeiden, wird die in *Bild 1-5* gezeigte Anordnung aus *Punktstrahler und Punktdetektor* verwendet.

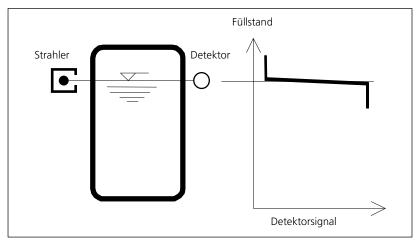


Bild 1-5 Punktstrahler / Punktdetektor-Anordnung für Grenzschalter

Technische Daten

Bei abweichenden Betriebsbedingungen nehmen Sie bitte mit BERTHOLD TECHNOLOGIES Rücksprache.

Umgebungstemperatur

für den Einsatz im Nicht-Ex Bereich

	Betrieb	Lager-		
	ungekühlt	mit Wasser- kühlung	temperatur	
CrystalSENS (Punktdetektor)	-40 bis +60°C	bis +100°C	-40 bis +60°C	
UniSENS (Stabdetektor) SuperSENS	-40 bis +60°C	bis +100°C	-40 bis +60°C	

Umgebungstemperatur

für den Einsatz im Ex Bereich

Bei Einsatz in explosionsgefährdeten Bereichen können eingeschränkte Temperaturbereiche gelten. Beachten Sie die maximalen Umgebungstemperaturwerte im Sicherheitshandbuch für den Explosionsschutz. Lagern Sie die Geräte trocken (keine Betauung), dunkel (kein direktes Sonnenlicht) in einem sauberen, abschließbaren Raum. Beachten Sie den zulässigen Temperaturbereich bei der Lagerung.

Allgemeine

Umgebungsbedingungen für Ex-

Schutz nach CSA

Pollution Degree: 2 Overvoltage Category: III Altitude: up to 4000 m

Humidity: 90% or less

Jeweils gültig sind die auf dem Typenschild des Detektors aufge-

führten Zulassungen.

IP-Schutzart nach IEC 60529: IP66 und IP68

nach ISO 20653: IP69K

nach NEMA Standard Publ. 250: 4X und 6

Vibration, mech. Schock Vibration: 1,9g

mech. Schock: 30g

nach DIN EN 60068-2-6 und 60068-2-27

EMV Störaussendung nach EN 61326-1, Betriebsmittel der Klasse A

Störfestigkeit nach EN 61326-1, NAMUR NE21 und

EN 61326-3-1 (SIL)

Gehäuse Material Edelstahl 1.4301/304; andere Edelstähle auf Anfrage.

Gewicht siehe Band 2, Kapitel 5.

Wasserkühlung Edelstahl 1.4301/304; maximal 6bar, Schlauchanschluss R1/4"

bzw. Ø 10 mm.

Stromausgang

HART-Stromausgang 4 ... 20mA, potentialfrei

passiv oder aktiv (Source, oder Sink Mode)

Auflösung besser 6µA

Impedanzbereich aktiv: 1200hm bis 5000hm

Impedanzbereich passiv: maximal 2500hm bei 12V, maximal

5000hm bei 24V

Für eine sichere ${\sf HART}^{\circledR}$ -Kommunikation sind mindestens 2500hm erforderlich.

Die max. Kabellänge der HART®-Schleife hängt vom angeschlossenen Widerstand sowie der Kapazität und Induktivität des Kabels ab.

Max. Kabellänge mit BERTHOLD Kabel # 32024:

- 3300m bei 1200hm

- 1600m bei 2500hm
- 800m bei 5000hm

Der Stromausgang selbst wird kontinuierlich überwacht und meldet bei Fehlfunktion 24 mA konstant über einen redundanten Stromweg. Die digitale HART $^{\text{®}}$ -Kommunikation bleibt auch auf dem redundanten Stromweg erhalten.

Strom		
passiv	aktiv	Signalausgang
LB 480-xx-0x	LB 480-xx-Zx	Nich-Ex
LB 480-xx-1x	LB 480-xx-2x	Ex e
LB 480-xx-3x	LB 480-xx-4x	eigensicher

Bei eigensicherem Signalausgang siehe Band 1, Kapitel 5, "Explosionsschutz".

Stromversorgung

Nennspannung (je nach Ausführung):

100V bis $240V_{AC} \pm 10\%$, 50/60Hz, max. 8VA bzw. 24VDC (18 bis 32VDC), max 8W

Kabeldurchführungen

4 Leitungsdurchführungen mit M20 (ATEX) oder ½" NPT (FM/CSA) zur Prozessanbindung, mit Blindstopfen verschlossen. Die bei der Installation nicht benötigten Verschraubungen müssen mit den für die Zündschutzart geeigneten Verschlussstopfen verschlossen bleiben, siehe Kapitel "Montageanleitung für Id. Nr. 56091" auf Seite 2-236.

Kabelverschraubungen

Die von BERTHOLD TECHNOLOGIES gelieferten Verschraubungen erreichen die Schutzklasse IP66, IP68 und IP69K. Der zulässige Leitungsquerschnitt für die Verschraubungen ist aus unserem Angebot, oder der Auftragsbestätigung zu entnehmen.

Die Verschraubungen werden auftragsbezogen beigelegt und können Messing vernickelt (Standard), oder aus Edelstahl sein.

Leitungsquerschnitt

Der verwendbare Leitungsquerschnitt ist abhängig von den verwendeten Kabelverschraubungen.

Adernquerschnitt für die Zugfederklemmen

0,5mm² bis 2,5mm²; Abisolierlänge 10mm

Szintillatoren

Тур	Szintillator	Dosisleistung (typ.) für CS-137 in µSv/h für 1000 lps	Temperatur- stabilität	Gewicht in kg	Gewicht in kg mit Wasserkühlung
CrystalSENS (Punktdetektor)	NaI (TI) 50*50mm NaI (TI) 40*35mm NaI (TI) 25*25mm NaI (TI) 44*5mm	0,8μSv/h 1,6μSv/h 5,4μSv/h (Am-241)	≤0,002%/°C	22,5	23
SuperSENS (Punktdetektor)	Plastik-Szintillator 150*150mm	Cs-137: 0,14µSv/h Co-60: 0,2µSv/h	≤0,01%/°C	60	61

Hochspannungserzeugung Spannungsbereich der Regelung 300V bis 1300V

(Fehlermeldung unter 300V und über 1300V)

Spannungsbereich externe Einstellung 300V bis 1300V

Empfindlichkeitsveränderungen durch Temperaturschwankungen oder durch Alterung werden durch eine automatische Hochspan-

nungsregelung kompensiert.

Zähler Rate max. 1.000.000 Ips

Automatische Zerfallskompensation Für Cs-137, Co-60 und ein universell konfigurierbares Isotop

Digitaler Ausgang (nicht Ex)

Open Collector, potentialfrei; max. 100mA bei 5 bis 35V_{DC}; R_{max}
10kOhm; max. 2V Spannungsabfall, Leckstrom im gesperrten
Zustand <0,01mA; bei induktiver Last ist eine Freilaufdiode erfor-

derlich

Der Ausgang ist wahlweise verwendbar für:

Fehlersignal

Halt-Signal

- Max.-Alarm

- Min.-Alarm

- Detektor-Temperatur

Fremdstrahlung

Bei eigensicherem Signalausgang siehe Band 1, Kapitel 5, "Explosi-

onsschutz".

RS-485 Für Software Update

Detektortemperaturfühler Zwei unabhängige Temperaturfühler

Messabweichung: -25°C bis 100°C: ±2K -55°C bis 125°C ±3K

Anbindung an PLS

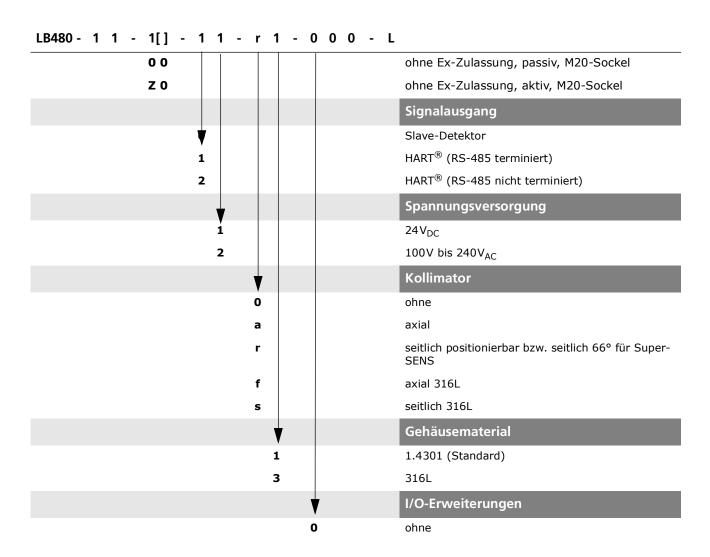
Über Stromschnittstelle 4–20mA mit optionalem $HART^{\circledR}$ -Protokoll gemäß Standard BELL-202 FSK.

Pt100

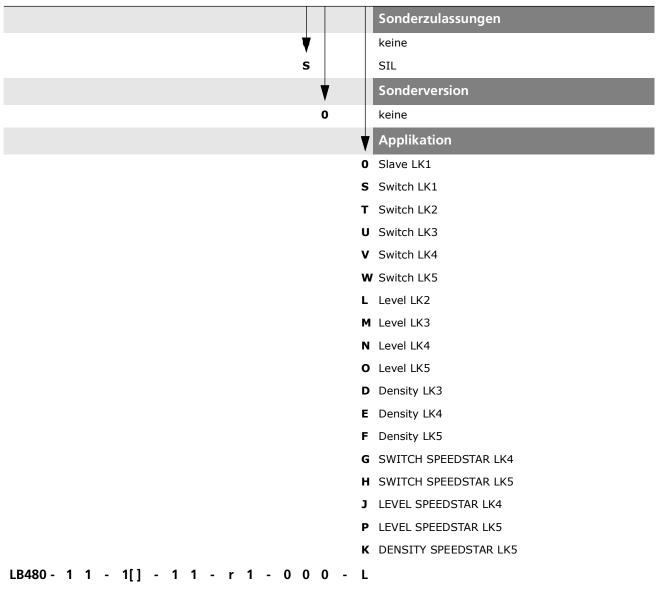
- messbarer Temp.-Bereich -30°C ... 180°C
- überwachte Temp.-Grenzen
- Genauigkeit: +/-0,2°C
- maximal anschließbare Kabellänge: 30 m

1.6 Detektorcodes

Die Codenummern dienen zur automatischen Arbeitspunkteinstellung der Hochspannung und wurden vom Hersteller bereits eingestellt. Sie müssen nur überprüft bzw. angepasst werden, wenn die Elektronik getauscht wurde.


Detektortyp	LB-Nr.	Szintillator	Detektorcode	Einschränkungen
CrystalSENS	LB 480-11	50x50 NaI	0	bei Impulsraten im Messbe-
	LB 480-12			reich von >1000cps
	LB 480-11	50x50 NaI	1	bei Impulsraten im Messbe-
	LB 480-12			reich von <1000cps
	LB 480-13	40x35 NaI	01	
	LB 480-14			
	LB 480-15	25x25 NaI	01	
	LB 480-16			
	LB 480-17	44x5 NaI	2 ¹	
	LB 480-18			
UniSENS	LB 480-2A	500	22	
	LB 480-2B			
	LB 480-2E	1000	13	
	LB 480-2F			
	LB 480-2I	1500	10	
	LB 480-2J			
	LB 480-2K	2000	10	
	LB 480-2L			
SuperSENS	LB 480-31	150x150	23	
	LB 480-32			

¹ Die Zählerraten im Messbereich müssen größer als 1000cps sein.


1.7 Nomenklatur der SENSseries LB 480

 $LB480 - 1 \ 1 \ - \ 1[] \ - \ 1 \ 1 \ - \ r \ 1 \ - \ 0 \ 0 \ 0 \ - \ L$

	Szintillator
1 1	CrystalSENS 50/50
1 2	CrystalSENS 50/50 + WK
1 3	CrystalSENS 40/35
1 4	CrystalSENS 40/35 + WK
1 5	CrystalSENS 25/25
1 6	CrystalSENS 25/25 + WK
1 7	CrystalSENS 44/5
2 A	UniSENS 500
2 B	UniSENS 500+ WK
2 E	UniSENS 1000
2 F	UniSENS 1000 + WK
2 I	UniSENS 1500
2 J	UniSENS 1500 + WK
2 K	UniSENS 2000
2 L	UniSENS 2000 + WK
3 1	SuperSENS 150x150
3 2	SuperSENS 150x150 + WK
4 1	TowerSENS 1000
4 2	TowerSENS 1000 + WK
4 3	TowerSENS 2000
4 4	TowerSENS 2000 + WK
₩	Zulassung; Versorgung/Signal
1[]	Zonen (ATEX/IECEx/NEC/CEC) Ex-d/e/t; passiv bzw. Slave
2[]	Zonen (ATEX/IECEx/NEC/CEC) Ex-d/e/t; aktiv
3[]	Zonen (ATEX/IECEx/NEC/CEC) Ex-d/e/i/t; passiv
4[]	Zonen (ATEX/IECEx/NEC/CEC) Ex-d/e/i/t; aktiv
A[] [] = Ex-Revision A, B,	Zonen (ATEX/IECEx/NEC/CEC); Ex-d; passiv bzw. Slave
B[]	Zonen (ATEX/IECEx/NEC/CEC); Ex-d; aktiv
C []	Zonen (ATEX/IECEx/NEC/CEC); Ex-dit; passiv bzw. Slave
D []	Zonen (ATEX/IECEx/NEC/CEC); Ex-dit; aktiv
F[]	Divisions (NEC/CEC); XP; passiv bzw. Slave
G [] /	Divisions (NEC/CEC); XP; aktiv

LB480 - 1 1 - 1[] - 1 1 - r 1 - 0 0 0 - L

(LK = Lizenzschlüssel/Licence Key)

2

Montage

Beachten Sie unbedingt:

- die nationalen Sicherheits- und Unfallverhütungsvorschriften
- die nationalen Montage- und Errichtungsvorschriften (z.B. EN 60079)
- die allgemein anerkannten Regeln der Technik
- die Angaben zu Transport, Montage, Betrieb, Wartung, Instandhaltung und Strahlerabgabe in dieser Bedienungsanleitung
- die Sicherheitshinweise und Angaben in dieser Bedienungsanleitung sowie die beiliegenden technischen Zeichnungen und Verdrahtungspläne
- die Kennwerte, Grenzwerte und die Angaben für die Betriebsund Umgebungsbedingungen auf den Typenschildern und in den Datenblättern
- die Hinweisschilder auf den Geräten

Gefahr durch radioaktive Strahlung! Radiometrische Messeinrichtungen verwenden radioaktive Stoffe.

Es kann eine Gefährdung durch Radioaktivität entstehen, wenn durch unsachgemäßen Umgang mit der Messeinrichtung Personen diesen Strahlen ausgesetzt sind.

Der Umgang mit diesen Messeinrichtungen ist deshalb nur Personen erlaubt, die im Umgang mit radioaktiven Materialien geschult sind und die notwendigen Fachkenntnisse besitzen, siehe Band 1, Kapitel 3, "Qualifikation des Personals", Seite 1-19. Sie können auch Baustellenpersonal, das Erfahrung im Transport von schweren Bauteilen hat, mit der Montage beauftragen. Dieses Baustellenpersonal ist jedoch von sachkundigen Personen anzuleiten, beim Transport und der Montage des Strahlers ist der Strahlenschutzbeauftragte (Radiation Safety Officer) hinzuzuziehen.

Bei sachgemäßem Umgang ist eine Gefährdung von Personen durch die eingebauten radioaktiven Stoffe ausgeschlossen.

Beachten sie unbedingt die für Ihr Land geltenden Strahlenschutz-Richtlinien sowie die in *Kapitel 10, Seite 1-139*, gegebenen Strahlenschutz-Hinweise. 2 Montage Band 2

Lagerung der Abschirmungen

Die Abschirmung mit dem radioaktiven Strahler wird in einer Verpackung angeliefert, die den Vorschriften für den Transport von radioaktiven Stoffen entspricht.

Verletzungsgefahr!

Das Gewicht der Strahlerabschirmung beträgt je nach Ausführung bis zu mehreren 100kg.

Stellen Sie daher sicher, dass die mechanische Stabilität der Befestigungsvorrichtungen dem Gewicht der Abschirmung angepasst ist und dass bei allen Arbeiten an der Abschirmung Schutzhelm und Sicherheitsschuhe getragen werden.

Nehmen Sie die Abschirmung erst kurz vor der Montage aus der Transportkiste. Bis zu diesem Zeitpunkt muss die Abschirmung inklusive des radioaktiven Strahlers an einem vor dem Zugriff von unbefugten Personen geschützten Ort zwischengelagert werden, siehe *Kapitel 2.1.4* auf *Seite 2-182*.

Detektor

Beschädigte Kabelverschraubungen müssen unverzüglich ausgetauscht werden. Keinesfalls darf der Detektor mit beschädigten Kabelverschraubungen betrieben werden. Bei eingedrungener Feuchtigkeit ist der Anschlussraum auszutrocknen.

Detektoren, die im Ex-Bereich eingesetzt werden, dürfen nach einem mechanischen Schlag oder Sturz nicht mehr in Betrieb genommen werden, da der Ex-Schutz dann nicht mehr gewährleistet ist. Der Detektor muss in solchen Fällen von einer durch BERTHOLD TECHNOLOGIES autorisierten Person begutachtet werden. Falls dies nicht möglich ist, müssen Sie den kompletten Detektor zur Überprüfung ins Herstellerwerk schicken.

Korrosionsbeständigkeit

Das Gehäuse des Detektors ist aus Edelstahl 1.4301 (304) und ist damit weitestgehend vor Korrosion geschützt. Der Schutz bei Edelstählen besteht aus einer passiven Oxidschicht an der Oberfläche, die durch Oxidation mit Sauerstoff entsteht. Wird die Oberfläche allerdings durch unlegierten Stahl verletzt und verbleiben dabei Partikel des unlegierten Stahls auf der Oberfläche (Fremdeisenkontamination), dann kann an dieser Kontaktstelle die Oberfläche korrodieren. Achten Sie deshalb darauf, dass weder während der Montage noch im Betrieb andere Metallteile aus unlegiertem Stahl mit der Gehäuseoberfläche des Detektors in Berührung kommen.

Montageposition

Größe und Lage des erfassbaren Messbereiches werden bei der Projektierung der Messstelle bestimmt und durch Zeichnungen, Skizzen oder schriftliche Hinweise festgelegt. Bei der Montage sind diese Festlegungen strikt zu beachten, da Abweichungen zu Fehlfunktionen der Messeinrichtung führen können.

Mithilfe der Zeichnungen der Abschirmung und entsprechend den Gegebenheiten an der Messstelle sind die Montagekonsolen und -befestigungen sorgfältig auszuführen.

54733-20BA1S 05.2025

2.1 Transport zur Montagestelle

WARNUNG

Verletzungsgefahr!

- Beim Abladen schwerer Systemteile niemals unter schwebende Last treten!
- Nur geprüfte und auf die Transportgewichte abgestimmte Anschlagmittel verwenden.
- Ausreichende Sicherheitsabstände einhalten.
- Schutzhelm und Sicherheitsschuhe tragen.

Der Transport darf von Baustellenpersonal, das Erfahrung im Transport von schweren Bauteilen hat, durchgeführt werden. Dieses Baustellenpersonal ist jedoch von autorisierten Personen anzuleiten, beim Transport des Strahlers ist der Strahlenschutzbeauftragte einzubeziehen.

2.1.1 Detektor und Auswerteeinheit transportieren

HINWEIS

Beschädigungsgefahr!

Beim Transport können Systemteile beschädigt werden.

Transportieren Sie Detektor und Auswerteeinheit in der Originalverpackung und schützen Sie die Teile vor Erschütterungen.

2.1.2 Abschirmung mit Strahler transportieren

Beachten Sie die Strahlenschutzrichtlinien. Ein Transport radioaktiver Stoffe auf öffentlichen Verkehrswegen darf nur durch Personen erfolgen, die im Besitz einer entsprechenden Transportgenehmigung sind!

Gefahr durch radioaktive Strahlung!

Der Transport des Strahlers darf nur in der Abschirmung erfolgen. Die Abschirmung muss während des Transports und der Montage geschlossen sein.

Die Abschirmung mit dem Strahler kann mit einem Gabelstapler von der Palette gehoben und an ihr Ziel transportiert werden. Sind Transportösen an Systemteilen angebracht, so sind diese zum Anheben zu verwenden, sofern Sie die Systemteile nicht in den Originalverpackungen transportieren.

2.1.3 Zwischenlagerung von Strahlern

Für die Zwischenlagerung von Strahlern von der Anlieferung bis zum Montagebeginn am Einsatzort sind geeignete Maßnahmen durch den Betreiber zu treffen.

Die Strahler werden in ihren Abschirmungen gelagert. Die Lagerung der Abschirmungen darf nur in einem abschließbaren und entsprechend gekennzeichneten Raum erfolgen. Begehbare Kontrollbereiche sind ggf. zu kennzeichnen und abzuschranken.

2.1.4 Montageorte

Verletzungsgefahr!

Schwere Systemteile können herabstürzen, wenn sie nicht ordnungsgemäß montiert sind.

Die Tragfähigkeit der Behälterwände bzw. der Halterungen muss für die Montage des Strahlers mit der Abschirmung und des Detektors geeignet sein.

Am Montageort müssen Freiräume vorgesehen werden für:

- Bewegungsfreiheit zur Anlieferung der Abschirmung, des Detektors und der Auswerteeinheit.
- Die elektrische Installation des Detektors.
- Wartungs- und Reparaturarbeiten, bei denen Teile auf- und abgebaut werden müssen.

Die Halterung für die montierten Systemkomponenten darf keine Vibrationen oder Erschütterungen auf den Detektor oder die Abschirmung übertragen. Ebenfalls muss verhindert werden, dass zu hohe Temperaturen auf die Systemkomponenten übertragen werden können.

Der Strahler mit Abschirmung sowie der Detektor werden in der vorgesehenen Position außen am Behälter und außerhalb einer eventuell vorhandenen Wärmeisolation montiert. Die genaue Position für Ihre Systemteile entnehmen sie bitte aus den von BERTHOLD TECHNOLOGIES erstellten Berechnungsunterlagen und den technischen Informationen.

2.1.5 Systemteile auspacken und reinigen

Nach dem Auspacken sind alle Teile auf Vollständigkeit laut Packliste und eventuelle Beschädigung zu kontrollieren. Falls erforderlich, müssen die Teile gereinigt werden.

Bei Schäden sind sofort das Transportunternehmen und der Hersteller zu verständigen.

54733-20BA1S 05.2025

2.2 Detektorschutz

HINWEIS

Der Detektor kann durch starke mechanische Belastungen, Vibrationen und hohe Temperaturen beschädigt werden.

Verhindern Sie eine Wärmeübertragung über die Detektorhalterung, auf den Detektor, durch eine geeignete wärmeentkoppelte Aufhängung.

2.2.1 Kühlung

Die Umgebungstemperatur darf die in den technischen Daten (siehe Band 2, Kapitel 1.5, Seite 2-171) angegebenen Werte nicht überschreiten. Sind höhere Temperaturen möglich, muss ein Detektor mit Wasserkühlmantel (siehe Seite 2-189) verwendet werden. Der Kühlwasserkreislauf muss auch bei ausgeschaltetem Detektor in Betrieb bleiben, sofern die maximale Betriebstemperatur überschritten werden kann.

HINWEIS

Überhitzungsgefahr!

Ein Ausfall der Wasserkühlung oder ein unzureichender Durchfluss kann den Detektor überhitzen und dadurch zerstören.

Die maximalen Umgebungstemperaturen sind in den technischen Daten in *Kapitel 1.5, Seite 2-171*, angegeben. Zusätzlich gilt:

- Bei Frostgefahr muss die Wasserkühlung entleert werden.
- Verschmutztes Kühlwasser kann die Wasserkühlung verstopfen, wodurch der Detektor überhitzt und zerstört werden kann. Verwenden Sie deshalb unbedingt sauberes Kühlwasser.
- Der Wasserdruck im Kühlmantel darf 6 bar nicht überschreiten

Wasserkühlung im Ex-Bereich

Für das Betreiben einer Wasserkühlung an Detektoren die im Ex-Bereich eingesetzt sind gelten die Angaben zur Umgebungstemperatur im Sicherheitshandbuch für den Explosionsschutz.

Detektor-Temperaturüberwachung

Der Detektor besitzt eine interne Temperaturmessung, mit der ein Voralarm bei erhöhter Temperatur ausgelöst werden kann. Der Temp.-Schaltpunkt ist einstellbar. Der Alarm kann am digitalen Ausgang abgegriffen werden (siehe *Band 3, Kapitel 2.27*). Wenn Sie die Wasserkühlung so betreiben dass die Temp. am Detektor unter 40°C bleibt, könnten Sie den Detektor beim Überschreiten eines Temp.-Limit von z.B. 50°C vorzeitig stromlos schalten, so dass der Detektors durch Übertemp. erst gar nicht beschädigt werden kann.

2 Montage Band 2

Kühlwasserbedarfs-Kennlinien

Die erforderliche Kühlwassermenge ist von der möglichen Wärmeübertragung, der Kühlwassertemperatur und dem Detektortyp abhängig. Die Kühlwasser-Kennlinien und weitere Informationen finden Sie in den technischen Informationen ab *Seite 2-217*.

Anschließen der Wasserkühlung

Der Wasserzulauf erfolgt immer von unten um Lufteinschlüsse zu vermeiden die die Kühlwirkung drastisch reduzieren können. Der Detektor ist daher so auszurichten dass der Wasserablauf am höchsten Punkt erfolgt. Siehe Darstellung auf *Seite 2-189*.

2.2.2 Sonnenschutz

Bei Freiluftmontage sollte über dem Detektor ein Wetterschutzdach angebracht sein, das unter anderem auch gegen direkte Sonnenbestrahlung schützt.

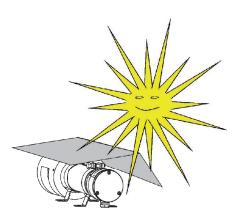


Bild 2-1 Sonnenschutz

2.2.3 Erschwerte Umgebungsbedingungen

Bei der Auswahl der Montagestelle ist zu beachten, dass mechanische Belastungen den Detektor nicht beeinflussen dürfen, damit dessen Lebensdauer nicht eingeschränkt wird. Herrschen an der Messstelle erschwerte Umgebungsbedingungen, so müssen der Detektor und die Abschirmung mit einer Schutzabdeckung versehen werden.

2.2.4 Vorbeugen bei Vibrationen

Starke Vibrationen oder Erschütterungen auf den Detektor verkürzen die Lebensdauer. Montieren Sie den Detekor an einem vibrationsfreien Träger, oder dämpfen Sie eventuell auftretende Vibrationen oder Erschütterungen mit geeigneten Schwingungsdämpfern.

2.2.5 Magnetfelder

Der Detektor besitzt eine interne Abschirmung die den Photomultiplier gegen Magnetfelder schützt. Dennoch können starke Magnetfelder in nächster Nähe zum Detektor dessen Funktion beeinträchtigen. In diesem Fall kann ein zusätzliches dickwandiges Stahlrohr den Detektor schützen, oder es ist die Messstelle an eine andere geeignete Position zu verlegen. In diesen Fällen wird Ihnen BERTHOLD TECHNOLOGIES gerne behilflich sein.

Band 2 2 Montage

2.2.6 Reinigung

Beachten Sie, dass bei Reinigungsmaßnahmen die Kabelverschraubungen und die Typenschilder nicht beschädigt werden. Der Detektor darf mit Wasser oder Benzin gereinigt werden. Entfernen Sie grobe Ablagerungen mit einer Drahtbürste. Nicht zulässig ist Schleifen, Feilen oder das Abklopfen von Ablagerungen mit dem Hammer.

2.3 CrystalSENS (Punktdetektor)

Stellen Sie sicher, dass

- die Halterungen für den Detektor oder für den Strahler nicht den Strahlengang behindern.
- sich im Strahlengang keine Rohre, Flansche, Rührer oder sonstige Einbauten befinden.

Nur wenn solche Einbauten bei der Auslegung der Messanordnung bereits bekannt waren, sind sie auch zulässig. Ansonsten ist die Kennlinie nicht mehr linear, es können sich sogar Abschnitte im Messbereich ergeben, in denen keine Änderung der Messwerte erfolgt.

i wichtig

Achten Sie bei der Montage des CrystalSENS auf dessen korrekte Ausrichtung zum Strahler (siehe auch Seite 2-218). Die seitliche Öffnung (Strahlenfenster) im Kollimator gibt den empfindlichen Bereich des Detektors frei und muss zum Strahler gerichtet sein.

Bild 2-2 CrystalSENS

Band 2 2 Montage

Für die Montage des CrystalSENS ist eine geeignete und bauseitig zu erstellende Konsole an den Behälter zu montieren. Der Abstand zur Behälteroberfläche oder zur Oberfläche einer evtl. vorhandenen Wärmeisolation sollte ca. 100mm betragen.

Die Befestigung des Detektors auf der Konsole erfolgt mittels Befestigungsschellen (siehe *Kapitel 2.3.1*) oder eines Montagesatzes (siehe *Kapitel 2.3.2*).

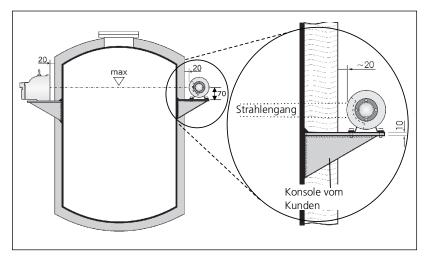


Bild 2-3 Montage CrystalSENS

Kann die Konsole nicht an den Behälter montiert werden, dann ist sie an einen in der Nähe befindlichen Träger zu montierten. *Bild 2-4* zeigt drei weitere alternative Vorschläge (A,B,C) den Detektor zu befestigen.

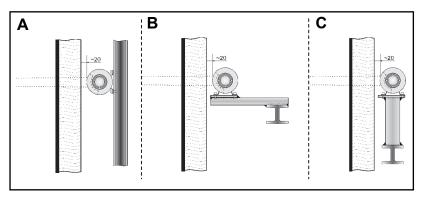
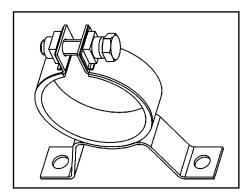
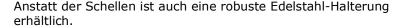



Bild 2-4 Alternative Befestigungen

Die technischen Zeichnungen zum CrystalSENS und dessen Zubehör finden Sie im *Kapitel 5 "Technische Informationen"* ab *Seite 2-218*.

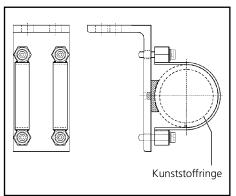
2 Montage Band 2


2.3.1 Montageablauf mit Befestigungsschellen

Für die Montage des Detektors sind Edelstahl-Schellen erhältlich.

Schellen für CrystalSENS ohne	Schellen für CrystalSENS mit
Wasserkühlung	Wasserkühlung
IDTNR 31346 (1 Satz= 2 Schellen)	IDTNR 31347 (1 Satz = 2 Schellen)

- Fertigen Sie eine passende Konsole (siehe Seite 2-221) für den Behälter.
- 2. Montieren Sie die Konsole entweder direkt am Behälter oder an einem stabilen Träger.
- 3. Montieren Sie den Detektor mit den Schellen auf die Konsole (siehe *Kapitel 5.1, "TI LB 480 Grenzhöhenschalter"*).



Die Halterung besteht aus einem Winkel auf dem bereits zwei Schellen montiert sind. Sie können die Halterung auf eine Konsole verschrauben oder aufschweißen.

Bei Detektoren ohne Wasserkühlung sind bei der bei der Montage die in nebenstehender Zeichnung gestrichelt eingezeichneten Kunststoffringe zu verwenden. Sie gleichen die Durchmesserdifferenz zwischen Detektoren mit bzw. ohne Wasserkühlung aus. So kann dieselbe Halterung universell für Detektoren mit und ohne Wasserkühlung verwendet werden.

Alle Metallteile dieser Halterung sind aus Edelstahl gefertigt. Die technische Zeichnung mit Dimensionen finden Sie im *Kapitel 5* ab *Seite 2-217*.

Montagesatz für CrystalSENS

IDTNR 39246

- 1. Fertigen Sie eine passende Konsole (*siehe Seite 2-221*) für den Behälter.
- 2. Montieren Sie die Konsole entweder direkt am Behälter oder an einem stabilen Träger.
- 3. Montieren Sie die Halterung mit dem Detektor auf die Konsole.

2.4 Wasserkühlung

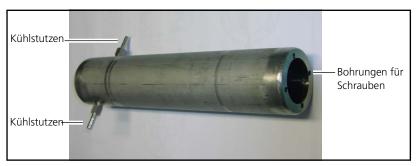


Bild 2-5 Wasserkühlung

Sofern Sie den Detektor zusammen mit der Wasserkühlung (WK) bestellt haben, ist die WK bereits montiert.

Wird die WK nachträglich bestellt, dann ist sie laut folgender Anweisung zu montieren.

1. Lösen Sie die vier stirnseitigen Schrauben und ziehen Sie den Kollimator vom Detektor ab.

Wasserkühlung montieren

HINWEIS

Um den Kollimator und die Wasserkühlung später wieder auf den Detektor zu befestigen, benötigen Sie vier Schrauben die 5 mm länger als die Original-Schrauben sind (nicht im Lieferumfang).



Bild 2-6 Befestigungsschrauben für Kollimator

2. Schieben Sie den Kühlmantel über den Detektor.

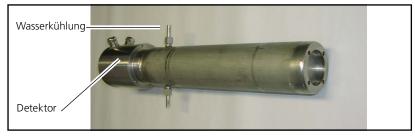


Bild 2-7 Detektor mit Wasserkühlung

3. Entfernen Sie den Kunststoff-Ring vom Kollimator, indem Sie die Schrauben seitlich am Kollimator lösen.

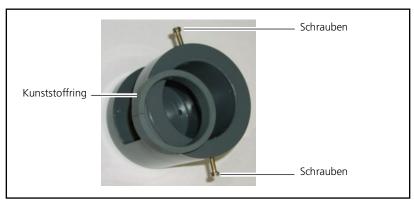


Bild 2-8 Kollimator für Detektor

4. Schieben Sie den Kollimator über die Wasserkühlung, so dass das Strahlenfenster zum Strahler ausgerichtet ist. Positionieren Sie dabei den Kollimator und Wasserkühlung zum Lochkreis des Detektors. Achten Sie darauf dass die Position der Kühl-Stutzen so angeordnet ist, dass Sie später ungehindert Zugang zur Montage der Wasserzuführung haben.

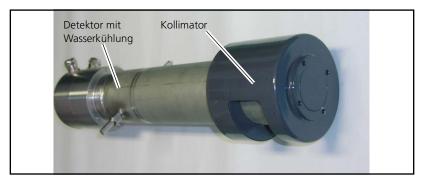


Bild 2-9 Detektor mit Wasserkühlung und Kollimator

Beachten Sie die Hinweise zur Wasserkühlung auf Seite 2-184.

Band 2 2 Montage

2.5 Abschirmung

Abschirmung, Strahlentyp, Isotop und Aktivität für jede Messanordnung werden zusammen mit dem Kunden so gewählt, dass die örtlich zulässigen Dosisleistungsgrenzen eingehalten werden. Für das System werden Co-60 oder Cs-137 Punktstrahler verwendet, die in eine stabile Kapsel aus Tital oder Edelstahl dicht eingeschweißt sind. Daher kann bei intaktem Strahler keine radioaktive Substanz austreten, Kontaminationen sind deshalb ausgeschlossen.

Bei Punktstrahlerabschirmungen ist die Kapsel mit dem Strahler an einem Strahlerhalter befestigt und in der Abschirmung eingebaut. Bei Stabstrahlerabschirmungen wird ein Stabstrahler in die vorhandene Bohrung der Abschirmung gestellt. Die Abschirmung ist der Länge des Strahlers angepasst.

Der Abstand von Strahlerabschirmungen zur Behälteroberfläche sollte so gestaltet sein, dass ein Hineingreifen in den Strahlengang mit der Hand verhindert wird (Richtwert ca. 20mm). Achten Sie bei Abschirmungen mit einem Drehzylinder (senkrecht stehender Zylinder) darauf, dass sich der Zylinder ohne Reibung auf der Behälteroberfläche drehen lässt.

Bis auf wenige Ausnahmen sind alle Abschirmungen mit Blei gefüllt, um die Dosisleistung an der Oberfläche bei kleinster Baugröße möglichst gering zu halten. Dementsprechend schwer sind auch die Abschirmungen. Die Gewichte entnehmen Sie bitte aus den technischen Zeichnungen im *Kapitel 5* ab *Seite 2-217*.

Hinweise über die Ausführung von Strahler und Abschirmung sind den technischen Dokumentationen und dem Typenschild ($Bild\ 2-10$) zu entnehmen.

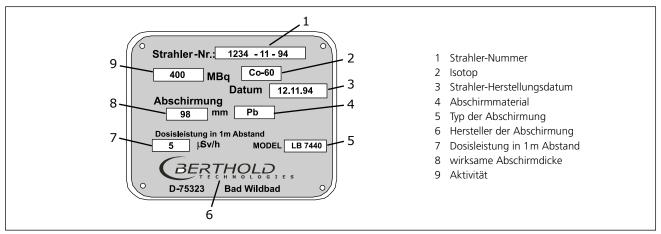


Bild 2-10 Typenschild

2 Montage Band 2

Beachten Sie bei der Montage die Sicherheitshinweise in *Band 1* ab *Seite 1-139*. Der Transport des Strahlers darf nur in der Abschirmung erfolgen. Die Strahlerabschirmung ist während der Lagerung, des Transports und der Montage geschlossen zu halten.

Die Anordnung der Strahler wird bei der Projektierung festgelegt und in einer Zeichnung eingetragen oder in schriftlicher Form festgelegt. Diese Angaben sind bei der Montage sorgfältig zu beachten, da sonst die angegebenen Linearisierungsdaten nicht stimmen. Detaillierte Informationen über die Konstruktion und Funktion der jeweils zum Einsatz kommenden Abschirmung gehen ebenfalls aus den Zeichnungen hervor, die Bestandteil der Dokumentation sind.

2.5.1 Punktstrahlerabschirmung LB744X

Das Strahlenwarnschild kennzeichnet den Beginn des Kontrollbereiches, sofern sich der Kontrollbereich außerhalb der Abschirmung befindet. Befindet sich der Kontrollbereich innerhalb der Abschirmung, dann genügt das bereits auf der Abschirmung angebrachte Strahlenwarnschild.

Bild 2-11 Strahlenwarnschild

⚠ VORSICHT

Erhöhte Strahlendosisleistung durch offenen Strahlengang!

Die Strahlung kann bei zu hoher Dosis zu gesundheitlichen Schäden führen.

Der Transport des Strahlers darf nur in der Abschirmung erfolgen. Die Abschirmung muss während des Transports und der Montage geschlossen sein.

Der Strahlenaustritt ist kegelförmig mit einem Winkel von ca. 10°. Die Abschirmung und damit auch das Nutzstrahlenbündel muss bei der Montage genau auf den Detektor ausgerichtet werden.

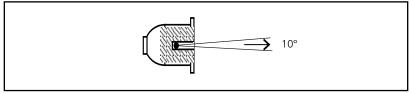


Bild 2-12 Punktstrahlerabschirmung

Band 2 2 Montage

Die Abschirmung besteht aus einem Bleizylinder mit Strahlenaustrittskanal (7), umgeben mit einem Stahlmantel (*Bild 2-13*). Der Verschließkern (6) ist fest mit einem Knebel (4) verbunden. Mit dem Vorhängeschloss (3) sind die Positionen AUF und ZU sowie die Entnahme des Strahlers gegen Unbefugte gesichert.

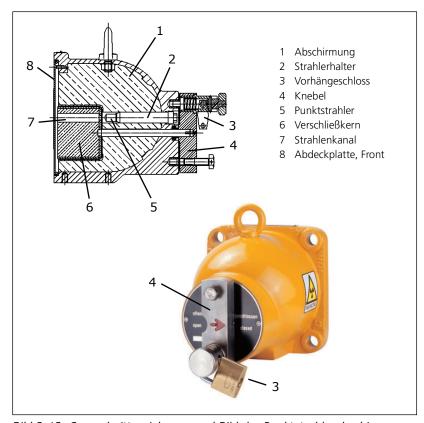


Bild 2-13 Querschnittszeichnung und Bild der Punktstrahlerabschirmung, oben: Strahlenkanal offen, unten: Strahlenkanal geschlossen

Beim Drehen am Knebel (4) wird der Verschließkern mitgedreht und der Strahlenaustrittskanal in Richtung Detektor freigegeben. Der Pfeil auf dem Knebel zeigt dabei auf AUF.

Während des Transports, bei der Montage sowie während der Durchführung von Arbeiten am Behälter muss der Strahlenaustrittskanal geschlossen sein, der Pfeil auf dem Knebel zeigt dann auf ZU. Sowohl in Stellung AUF als auch in Stellung ZU wird der Knebel bzw. der Verschließkern mit einem Vorhängeschloss gesichert.

HINWEIS

Funktionsausfall durch Beschädigung

Die Halterung darf keine Vibrationen, Erschütterungen oder Wärme auf die Abschirmung übertragen, da ansonsten der Verschließmechanismus beschädigt werden kann und die Abschirmwirkung erheblich geschwächt werden könnte.

Bringen Sie die Halterung deshalb an einem vibrationsfreien Träger an oder dämpfen Sie eventuell auftretende Vibrationen mit Schwingungsdämpfern. Verhindern Sie eine Wärmeübertragung durch geeignete Isoliermaterialien.

Abschirmung montieren

Die Montage ist auf einer Konsole möglich oder kann an einem Flansch erfolgen (siehe *Seite 2-221*). Größe und Lage des erfassbaren Messbereiches werden bei der Projektierung der Messstelle bestimmt und durch Zeichnungen, Skizzen oder schriftliche Hinweise festgelegt. Bei der Montage sind diese Festlegungen strikt zu beachten, da Abweichungen zu Fehlfunktionen der Messeinrichtung führen können.

Der Montageflansch oder Montagesockel für die Abschirmung muss bei der Montagevorbereitung den vorgesehenen Winkel berücksichtigen. Montageteile mit verstellbarem Winkel lassen später auch noch Anpassungen oder Änderungen in gewissen Grenzen zu. 3

Elektrische Installation

Die Installation darf nur von einer Elektrofachkraft (fachkundige Person) durchgeführt werden.

Der sichere Betrieb des Detektors ist nur gewährleistet, wenn die in *Band 1* im *Kapitel 6* aufgeführten Sicherheitshinweise eingehalten werden.

3.1 Leitungseinführungen

Die Detektoren sind je nach Ausführung entweder mit M20- (ATEX) oder mit ½" NPT-Leitungseinführungen (FM/CSA) versehen, durch die die elektrischen Leitungen entsprechend den Vorschriften zu verlegen sind. In die Leitungseinführungen können Leitungsrohre oder Kabelverschraubungen eingeschraubt werden. Diese müssen für die jeweilige erforderliche Zündschutzart zugelassen sein und den Bestimmungen entsprechend sorgfältig montiert werden! Richten Sie Kabel und Kabeldurchführungen so aus, dass kein Wasser entlang des Kabels in die Durchführung fließen kann. Achten Sie auch darauf, dass alle Kabel scheuerfrei, zugentlastet und knickfrei verlegt sind.

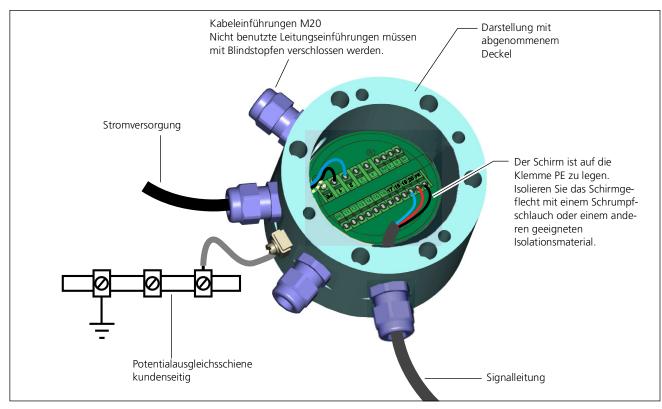


Bild 3-1 Detektorgehäuse geöffnet - Ansicht von oben

Nicht benutzte Leitungseinführungen müssen mit den mitgelieferten Blindstopfen korrekt verschlossen sein.

3.1.1 Zusätzlich zu beachten bei Anschlussart ATEX

Beachten Sie die Sicherheitshinweise in Kapitel 5, "Explosions-schutz", Band 1.

3.1.2 Zusätzlich zu beachten bei Anschlussart FM/

Bei jeder verwendeten Leitungsdurchführung ist unmittelbar nach dem Detektorgehäuse eine Zündsperre (Conduit Seal) einzubauen.

3.1.3 Detektor austauschen oder an einer anderen Messtelle verwenden

Da Detektoren, die im Nicht-Ex-Bereich eingesetzt werden, nicht der Aufsicht und Pflege von Ex-Schutz-Sachverständigen unterliegen, ist auch nicht gewährleistet, dass z.B. bei Reparatur oder Montage die Sorgfalt angewandt wird, die für Detektoren im Ex-Bereich erforderlich ist. Die Ex-Schutz-Sicherheit ist deshalb nicht mehr gewährleistet. Gleiches gilt für die Eigensicherheit von Detektoren. Deshalb gilt:

- Detektoren, die im Nicht-Ex-Bereich eingesetzt waren, dürfen nicht mehr in einem Ex-Bereich eingesetzt werden.
- Eigensichere Detektoren, deren eigensichere Signale an nicht eigensichere Stromkreise angeschlossen waren, dürfen nicht mehr an eigensicheren Stromkreisen angeschlossen werden.

3.2 Anschlussklemmen

3.2.1 Anschlussraum

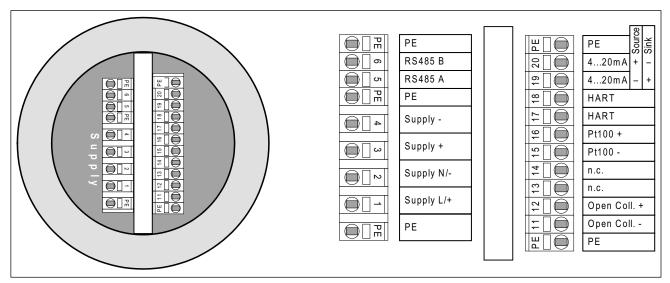


Bild 3-2 Anschlussraum

Zulässiger Leiterquerschnitt für Klemmen:

- mit Aderendhülsen 0,5 1,5 mm² (AWG 21 16 flexibel)
- ohne Aderendhülse 0,5 2,5 mm² (AWG 21 - 14 flexibel oder starr)

3.2.2 Beschreibung der Anschlüsse

Klemmen	Master
	HART®
PE (5 x)	Anschluss für Schutzerde und Schirm
1 - 2	Netzanschluss: 100V bis 240 V_{AC} bzw. 24 V_{DC} , je nach Ausführung
3 - 4	Wie Klemme 1 - 2: zusätzliches Klemmenpaar zur Weiterleitung (Durchschleifen) der Versorgungsspannung an den nächsten Slave (nur zulässig bei Versorgung mit 24V _{DC})
5 - 6	RS-485: Serviceschnittstelle und für Software-Update

Klemmen	Master
	HART®
11 - 12	Open Collector Signalausgang mit Verpolschutz ALARM: kein Strom NORMAL: Strom fließt Die Versorgungsspannung für den Open Collector muss zwischen 5 und 36V liegen. Der maximale Strom der durch den Open Collector fließen darf beträgt 100mA. Je nach Versorgungsspannung ergeben sich daraus folgende Widerstandswerte die angeschlossen sein müssen: 5V: ≥30Ω 12V: ≥100Ω 24V: ≥220Ω 36V: ≥340Ω Wird der Widerstandswert unterschritten, kann der Open
13 - 14	Collector beschädigt werden.
	Reserviert für optionale I/Os
15 - 16	Pt100 zur Temperaturkompensation, nur bei Dichtemessung
17 - 18	Wie Klemme 19 - 20: zusätzliches Klemmenpaar zum parallelen Anschluss eines HART®-Kommunikators
19 - 20	HART®- Stromausgang: 4–20 mA-Stromausgang zur Messwertausgabe und Parametrierung. Dieser Stromausgang dient der kontinuierlichen Übertragung des Messwertes und zur Anzeige des Fehlerzustandes durch den einstellbaren Fehlerstrom:
	 4-20mA für aktuellen Messwert. Einstellbarer Fehlerstrom von 3,5 bis 24mA im Fehlerfall. Der Stromausgang wird kontinuierlich überwacht und meldet bei Fehlfunktion den über die Software eingestellten Fehlerstrom über einen redundanten Stromweg. Die digitale HART®-Kommunikation bleibt auch auf dem redundanten Stromweg erhalten. Max. Kabellänge mit BERTHOLD Kabel # 32024: 1600m bei 250Ω 800m bei 500Ω Der Stromausgang wird je nach Typ im Sink- oder im Source-Mode betrieben. Betriebsart Source-Mode (aktiver Stromausgang) Impedanz-Bereich: 250 500Ω Betriebsart Sink-Mode (passiver Stromausgang) Versorgungspannung: 18 32V_{DC} max. Impedanz: 500Ω

Signalkabel mit Abschirmung

Für die Signalleitungen empfehlen wir, abgeschirmte Kabel zu verwenden.

Der Schirm muss einseitig am Detektor auf die Klemme PE im Anschlussraum des Detektors aufgelegt werden, oder besser auf geeignete EMV-Kabelverschraubungen.

3.3 Detektor anschließen

Falls bereits Leitungen an den Detektor angeschlossen sind, gilt:

MARNUNG

Explosionsgefahr!

Solange der Detektor mit Spannung versorgt wird, darf bei explosionsfähiger Atmosphäre der Deckel für den Anschlussraum nicht geöffnet werden.

↑ WARNUNG

Lebensgefahr durch Stromschlag!

Bei geöffnetem Deckel des Anschlussraums besteht bei Berührung der Anschlussklemmen die Gefahr eines Stromschlags. Klemmen Sie keine Adern an oder ab, solange das Gerät mit Netzspannung versorgt wird.

Je nach Detektortyp wird der Detektor mit $110/230\,V_{AC}$ oder mit $24\,V_{DC}$ versorgt. Achten Sie bei der Version mit $110/230\,V_{AC}$ und bei eingeschalteter Netzspannung auf ausreichenden Berührungsschutz.

Beachten Sie unbedingt die Sicherheitshinweise zur "Elektrischen Installation" auf Seite 2-195 und sofern zutreffend zum "Explosionsschutz" auf Seite 1-23.

WICHTIG

Öffnen Sie den Anschlussraum nur bei trockenen Umgebungsbedingungen, keinesfalls bei Regen.

Feuchtigkeit im Anschlussraum kann sowohl einen Kurzschluss mit anderen Leitungen verursachen als auch den Ex-Schutz aufheben.

Im Folgenden wird davon ausgegangen, dass noch keine Kabel angeklemmt sind. Stellen Sie andernfalls sicher, dass der Detektor spannungsfrei ist.

Da die Intensität von elektromagnetischen Einstreuungen auf die Kabel in den Anlagen sehr unterschiedlich ist, empfehlen wir, grundsätzlich abgeschirmte Kabel zu verwenden. Signalleitungen dürfen nicht parallel zu Stromversorgungsleitungen geführt werden. Dies ist insbesondere bei Stammleitungen und Leitungen mit hoher Stromlast wichtig: Halten Sie einen Abstand von mindestens 50 cm ein.

Kabelschirme können auf den mit PE gekennzeichneten Klemmen aufgelegt werden. Sofern EMV-Kabelverschraubungen verwendet werden, ist der Schirm direkt in der Kabelverschraubung aufzulegen. Schirmleitungen müssen einseitig am Detektor aufgelegt werden. Legen Sie auch bei einer Multidetektor-Applikation den Schirm der RS-485-Verbindungsleitung nur einseitig auf.

Verwenden Sie bei den folgenden Tätigkeiten die Checklisten in *Kapitel 5.9.1* auf *Seite 1-54* und *Kapitel 5.9.2* auf *Seite 1-56*, um die Richtigkeit und Vollständigkeit Ihrer Arbeit zu dokumentieren.

Bei Detektoren, die im Ex-Bereich eingesetzt werden, darf das Detektorgehäuse (*Bild 3-3*) und damit die druckfeste Kapselung der Elektronik ausschließlich vom Service der Fa. BERTHOLD TECHNOLOGIES geöffnet werden oder von Personen, die von BERTHOLD TECHNOLOGIES dazu autorisiert wurden.

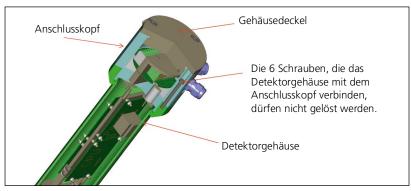


Bild 3-3 Detektorgehäuse mit Anschlusskopf

Leitungen anschließen

- Schrauben Sie den Gehäusedeckel ab (M5 bzw. M8 Innensechskantschlüssel).
- ► Lösen Sie die Verschlussstopfen an den Durchführungen, die Sie für Ihre Leitungseinführung benötigen.
- ► Montieren Sie die Kabelverschraubung bzw. bei FM/CSA ein Conduit-System mit einer Zündsperre (Conduit Seal) vor der Leitungsdurchführung in den Anschlussraum.

i WICHTIG

Verwenden Sie in explosionsgeschützten Bereichen ausschließlich Kabelverschraubungen, die für Ihren Explosionsschutz zugelassen sind.

- ► Ziehen Sie die Anschlussleitungen mit der kompletten äußeren Isolation durch die Kabeleinführung in den Anschlussraum.
 - Achten Sie darauf, dass der Kabeldurchmesser der verwendeten Kabel für die Verschraubung geeignet ist.
- ► Stellen Sie beim Verlegen der Kabel sicher, dass mechanische Beschädigungen der Leiterisolation an scharfkantigen oder beweglichen Metallteilen ausgeschlossen sind.
- ► Halten Sie die Kabellänge ausreichend lang, um anschließend eine Kabelschlaufe als Zugentlastung vor dem Gehäuseeintritt schlagen zu können.

- ▶ Verlegen Sie die Anschlussleitungen im Anschlussraum so, dass
 - Schmutz und Feuchtigkeit im Anschlussraum vermieden wird.
 - beim Abisolieren die Leiter nicht beschädigt werden.
 - beim Abisolieren die Leiterisolation bis an die Klemmen heranreicht.
 - die für den jeweiligen Leiterquerschnitt zulässigen minimalen Biegeradien nicht unterschritten werden.
- ▶ Litzenleitungen sind 10mm abzuisolieren, und dürfen erst eingeführt werden wenn die Federzugklemme durch ein geeignetes Werkzeug (Schraubendreher mit Klingenbreite ca. 3 mm) geöffnet wurde. Stellen Sie sicher dass alle Drähte der Litzenleitung vollständig untergeklemmt sind und kein Drähtchen aus der Klemme ragt. Die Isolation der Ader muss in die Klemmeneinführungsöffnung hineinragen.
- ▶ Schließen Sie die Leiter laut den Anschlussplänen in *Kapitel 3.1* und *Kapitel 3.2* an die Klemmleiste des Detektors an. Belegen Sie dabei mindestens folgende Klemmen:
 - Signalausgang: Klemmen 19 und 20
 - Netzversorgung: Klemmen 2 und 3 und Klemme PE für den Schutzleiteranschluss.
- ► Legen Sie die Kabelschirme auf die mit PE gekennzeichneten Klemmen auf. Legen Sie den Kabelschirm direkt innerhalb der Verschraubung auf, falls Sie EMV-Verschraubungen verwenden.
- Vergewissern Sie sich, dass die Adern fest in den Anschlussklemmen sitzen.
- ▶ Verbinden Sie die Klemme für den Potentialausgleich außen am Detektorgehäuse mit der Potentialausgleichsschiene.
- ▶ Bei Kabelverschraubungen: Ziehen Sie die Sechskantmuttern der Kabeleinführungen so fest an, dass die Dichtheit des Anschlussraumes und der Zugentlastungsschutz der Anschlussstellen gesichert sind. Die Anzugsdrehmomente finden Sie auf Seite 1-50.
- ► Entfernen Sie ggf. lose Metallteilchen, Verschmutzungen und Feuchtigkeitsspuren aus dem Anschlussraum.
- ► Nur bei Ex-Schutz FM/CSA: Vergießen Sie bei Verrohrung im Ex-Bereich die Zündsperre hinter der Leitungsdurchführung mit einem geeigneten Füllstoff.
- Vergewissern Sie sich, dass die Deckeldichtung unbeschädigt ist und die Sprengringe bzw. Nordlockscheiben auf allen Deckelschrauben aufgelegt sind.
- Verschließen Sie das Gehäuse sorgfältig mit der Deckeldichtung und dem Gehäusedeckel. Legen Sie hierzu den Gehäusedeckel mit Dichtung auf das Gehäuse auf und ziehen Sie die Innensechskantschrauben mit dem vorgeschriebenen Drehmoment fest: je nach Ausführung M5 mit 4Nm oder M8 mit 17Nm (Richtwerte).

- Schlagen Sie bei den angeschlossenen Leitungen Kabelschlaufen vor dem Gehäuseeintritt und sorgen Sie für eine geeignete Zugentlastung der angeschlossenen Kabel. Besteht die Gefahr, dass die Kabel als Trittleiter missbraucht werden, dann sind die Kabel entsprechend geschützt zu verlegen, zum Beispiel in Leitungsrohren.
- ▶ Legen Sie erst jetzt die Netzspannung an.

Verwenden Sie nach Abschluss der Arbeiten den Plan für die Kontrolle des Anschlussraumes auf *Seite 1-56*.

Reparatur, Wartung und Instandhaltung

i wichtig

Ersatzteile für im Ex-Bereich eingesetzte Detektoren dürfen ausschließlich vom Service der Fa. BERTHOLD TECHNOLOGIES montiert werden oder von Personen, die von BERTHOLD TECHNOLOGIES dazu autorisiert sind. Falls dies nicht möglich ist. müssen Sie den kompletten Detektor tauschen oder ins Herstellerwerk zur Reparatur schicken.

Bei Geräten, die NICHT im Ex-Bereich eingesetzt sind, dürfen auf eigene Verantwortung und unter Verlust einer eventuell bestehenden Garantie gegenüber BERTHOLD TECHNOLOGIES folgende Teile getauscht werden:

- die komplette Detektorelektronik
- der komplette Anschlusskopf
- der Kristall bei CrystalSENS
- der Multiplier (Photomultiplier)
- die Multiplier-Kristallkombination
- das Detektorgehäuse

BERTHOLD TECHNOLOGIES empfiehlt, Detektoren ausschließlich vom Service der Fa. BERTHOLD TECHNOLOGIES reparieren zu lassen oder von Personen, die von BERTHOLD TECHNOLOGIES dazu autorisiert sind.

Es dürfen nur Original-Ersatzteile von BERTHOLD TECHNOLOGIES verwendet werden.

Berücksichtigen Sie bei jeder Reparatur die Hinweise im Sicherheitshandbuch (Band 1) und die Anweisungen in Kapitel 3, "Elektrische Installation", Seite 2-195.

Verwenden Sie nach einer Reparatur, Wartung oder Instandhaltung die Prüflisten auf Seite 1-54 und Seite 1-56.

4.1 Sicherheitshinweise

Beachten Sie die geltenden nationalen Bestimmungen im Einsatzland!

Reparatur- und Instandhaltungsarbeiten an den Detektoren dürfen nur von sachkundigem Personal durchgeführt werden, siehe Band 1, Kapitel 3, "Qualifikation des Personals", Seite 1-19. Im Zweifelsfall ist der komplette Detektor zur Reparatur an BERTHOLD TECHNOLOGIES zu schicken.

Beachten Sie außerdem folgende Hinweise:

- Reparaturen an elektronischen Schaltkreisen auf den Platinen eines SENSseries-Detektors dürfen ausschließlich im Herstellerwerk durchgeführt werden.
- Bei Arbeiten an elektrischen Komponenten sind grundsätzlich die einschlägigen Sicherheitsvorschriften zu beachten. Beachten Sie insbesondere die Sicherheitshinweise am Anfang dieser Bedienungsanleitung. Schalten Sie den Detektor und alle Einund Ausgänge spannungsfrei.

Gefahr durch radioaktive Strahlung!

Radiometrische Messeinrichtungen verwenden radioaktive Stoffe.

Der Strahler gibt radioaktive Strahlung über den Strahlenaustrittskanal ab. Es kann eine Gefährdung durch Radioaktivität entstehen, wenn Personen diesen Strahlen ausgesetzt sind.

Halten Sie daher während der Montagearbeiten den Strahlenaustrittskanal der Abschirmung stets geschlossen.

Alle Arbeiten in unmittelbarer Nähe der Abschirmungen, die den radioaktiven Strahler enthalten, dürfen nur nach ordnungsgemäßer Unterweisung oder unter sachkundiger Anleitung erfolgen, siehe *Band 1, Kapitel 3, "Qualifikation des Personals"*. Bei unsachgemäßen Reparaturen droht der Verlust des Explosionsschutzes.

Korrosionsschutz

Kommt unlegierter Stahl mit einer Edelstahloberfläche in Kontakt, kann an dieser Kontaktstelle die Oberfläche korrodieren. Achten Sie deshalb darauf, dass weder während der Montage noch im Betrieb andere Metallteile aus unlegiertem Stahl mit der Gehäuseoberfläche des Detektors in Berührung kommen.

EGB-Schutzmaßnahmen

Die Elektronik dieses Messsystems enthält elektrostatisch hochempfindliche Bauteile. Verwenden Sie während der Installation oder Reparatur ein EGB-Armband. Verbinden Sie dieses mit dem Schutzleiter.

4.2 Kompletten Detektor tauschen

Wiederverwendung von Detektoren

Detektoren, die im Nicht-Ex-Bereich eingesetzt waren, dürfen nicht mehr in einem Ex-Bereich eingesetzt werden.

Eigensichere Detektoren, deren eigensichere Signale an nicht eigensichere Stromkreise angeschlossen waren, dürfen nicht mehr an eigensichere Stromkreise angeschlossen werden.

Erläuterung:

Da Detektoren, die im Nicht-Ex-Bereich eingesetzt werden, nicht der Aufsicht und Pflege von Ex-Schutz-Sachverständigen unterliegen, ist auch nicht gewährleistet, dass z.B. bei Reparatur oder Montage die Sorgfalt angewandt wird, die für Detektoren im Ex-Bereich erforderlich ist. Die Ex-Schutz-Sicherheit ist deshalb nicht mehr gewährleistet. Gleiches gilt für die Eigensicherheit von Detektoren.

Detektor tauschen

Um den Detektor zu tauschen, gehen Sie wie folgt vor:

- Dokumentieren Sie alle Software-Parameter des installierten Detektors.
- Trennen Sie den Detektor vom Netz.
- Schalten Sie evtl. angeschlossene Peripherie und alle Ein- und Ausgänge spannungsfrei.
- Schrauben Sie den Gehäusedeckel ab (M5 bzw. M8 Innensechskantschlüssel).
- Lösen Sie die Verdrahtungen an den Anschlussklemmen.

Sofern die Drähte nicht gekennzeichnet sind, empfiehlt sich eine Markierung der einzelnen Drähte vor dem Abklemmen.

HINWEIS

Schrauben Sie nach dem Abklemmen der Drähte und Kabel den Gehäusedeckel mit Dichtung sofort wieder auf, damit die Teile bei der mechanischen Demontage nicht beschädigt werden können.

- Bauen Sie den alten Detektor von der Halterung ab.
- Montieren Sie den neuen Detektor auf die Halterung.
- Schrauben Sie den Gehäusedeckel des neuen Detektors ab.
- Klemmen Sie die Drähte an.
- Verschließen Sie das Gehäuse sorgfältig mit dem Gehäusedeckel. Legen Sie hierzu den Gehäusedeckel mit Dichtung auf das Gehäuse auf und ziehen Sie die Innensechskantschrauben mit dem vorgeschriebenen Drehmoment fest: je nach Ausführung M5 mit 4Nm oder M8 mit 17Nm (Richtwerte).
- Schalten Sie das Netz ein.

- Geben Sie die zuvor dokumentierten Parameter des Detektors mit Ausnahme des Parameter HV-Default über den HART[®]-Kommunikator oder eine alternative Bedienoberfläche wieder ein.
- ► Führen Sie eine neue Kalibrierung durch (siehe *Band 3, Kapitel 5*).

Danach ist der Detektor wieder betriebsbereit.

54733-20BA1S 05.2025

4.3 Elektronikeinsatz tauschen

Explosionsgefahr!

Bei Detektoren, die im Ex-Bereich eingesetzt werden, darf der Elektronikeinsatz ausschließlich vom Service der Fa. BERTHOLD TECHNOLOGIES getauscht werden oder von Personen, die von BERTHOLD TECHNOLOGIES dazu autorisiert sind. Falls dies nicht möglich ist, müssen Sie den kompletten Detektor tauschen oder ins Herstellerwerk zur Reparatur schicken.

WICHTIG

Aus- und Einbau von Teilen des SENSseries-Detektors muss in sauberer Werkstattumgebung erfolgen.

Der Elektronikeinsatz muss ausgebaut werden, wenn eines der folgenden Teile getauscht werden muss:

- Elektronikeinsatz (siehe Seite 2-207)
- Kristall-Multiplier-Kombination für CrystalSENS (siehe Seite 2-210)

Die Elektronik wird bei CrystalSENS zusammen mit der Kristall-Multiplier-Kombination ausgebaut. Beim SuperSENS wird die Elektronik zusammen mit dem Multiplier ausgebaut.

Elektronikeinsatz ausbauen 4.3.1

ii wichtig

Da alle Detektorparameter auf dem Elektronikeinsatz abgespeichert sind, müssen Sie nach einem Tausch des Elektronikeinsatzes auch alle Parameter wieder eingeben. Falls Sie vor dem Tausch noch Zugriff auf die Detektorparameter haben, notieren Sie diese, damit Sie sie anschließend in die neue Elektronik eingeben können. Im anderen Fall müssen Sie den Detektor neu parametrieren und kalibrieren, lesen Sie hierzu den für Sie zutreffenden Band zur Bedienuna.

Um den Elektronikeinsatz zu tauschen, müssen Sie das Gehäuseüberrohr vom Anschlusskopf abmontieren.

Die im Folgenden beschriebenen Tätigkeiten dürfen Sie nur dann durchführen, wenn es sich um einen Detektor handelt, der nicht in einem Ex-Bereich eingesetzt ist.

- Dokumentieren Sie alle Softwareparameter des installierten Detektors.
- Trennen Sie den Detektor vom Netz und schalten Sie den Detektor und evtl. angeschlossene Peripheriegeräte spannungslos.

№ WARNUNG

Lebensgefahr durch Stromschlag!

Bei geöffnetem Gehäuse können spannungsführende Teile berührt werden, wenn die Stromversorgung angeschlossen ist.

Vergewissern Sie sich nach dem Öffnen des Deckels, dass keine Versorgungsspannung mehr auf den Klemmen ist. Verwenden Sie hierzu ein Spannungsmessgerät.

- Schrauben Sie den Gehäusedeckel ab (M5 bzw. M8 Innensechskantschlüssel).
- Schrauben Sie die sechs Schrauben ab, die das Detektorgehäuse mit dem Anschlusskopf verbinden (Torx T25).

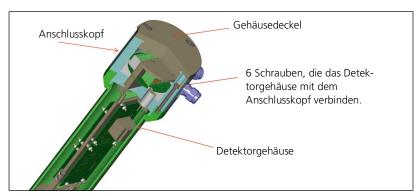


Bild 4-1 Detektor-Elektronik ausbauen

- ► Ziehen Sie den Elektronikeinsatz mit der Kristall-Multiplier-Kombination vorsichtig heraus.
- Demontieren Sie das Überrohr mit dem Multiplier (SuperSENS) bzw. mit der Kristall-Multiplier-Kombination (CrystalSENS) von der Elektronik.
- ► Lösen Sie die Anschlussdrähte zwischen Anschlusskopf und Elektronik.
- ▶ Demontieren Sie die Elektronik vom Anschlusskopf, indem Sie die vier Madenschrauben seitlich auf der Metallplatte der Platinenhalterung lösen.
- Nun können Sie den kompletten Elektronikeinsatz tauschen.

4.3.2 Elektronikeinsatz einbauen

Der Zusammenbau des Elektronikeinsatzes erfolgt in umgekehrter Reihenfolge.

- ► Klemmen Sie die Drähte zwischen Anschlusskopf und Elektronik wieder richtig an.
- ▶ Prüfen Sie, ob die Drähte fest in den Klemmen sitzen.
- ▶ Erneuern Sie den O-Ring, der das Gehäuse abdichtet.
 - Vergewissern Sie sich, dass weder Feuchtigkeit noch Metallspäne im Anschlussraum vorhanden sind.
- ► Führen Sie den Elektronikeinsatz mit der Kristall-Multiplier-Kombination vorsichtig wieder in das Gehäuse ein.
- ▶ Befestigen Sie den Anschlusskopf wieder am Detektorgehäuse. Ziehen Sie die Schrauben gleichmäßig wechselseitig an.
- ▶ Verschließen Sie das Gehäuse sorgfältig mit dem Gehäusedeckel. Legen Sie hierzu den Gehäusedeckel mit Dichtung auf das Gehäuse auf und ziehen Sie die Innensechskantschrauben mit dem vorgeschriebenen Drehmoment fest: je nach Ausführung M5 mit 4Nm oder M8 mit 17Nm (Richtwerte).

Falls Sie einen neuen Elektronikeinsatz eingebaut haben:

- ▶ Überkleben sie die Nummer der Dev. ID auf dem Typenschild mit dem mitgelieferten Klebeschild.
- ▶ Stellen Sie die Spannungsversorgung des Detektors wieder her.
- ► Setzen Sie die Softwareparameter erneut anhand der Liste, die Sie zu Beginn notiert hatten. Siehe hierzu auch *Band 3* ab *Seite 3-245*.

Für Bedienoberflächen wie z.B. SIMATIC PDM oder FOUNDATION $^{^{\text{TM}}}$ Fieldbus gibt es gesonderte Bedienungsanleitungen.

Der Austausch des Elektronikeinsatzes ist damit abgeschlossen.

4.4 Kristall-Multiplier-Kombination tauschen (für CrystalSENS)

Explosionsgefahr!

Bei Detektoren, die im Ex-Bereich eingesetzt werden, darf die Kristall-Multiplier-Kombination ausschließlich vom Service der Fa. BERTHOLD TECHNOLOGIES getauscht werden oder von Personen, die von BERTHOLD TECHNOLOGIES dazu autorisiert sind. Falls dies nicht möglich ist, müssen Sie den kompletten Detektor tauschen oder ins Herstellerwerk zur Reparatur schicken.

Bei einem Austausch der Kristall-Multiplier-Kombination kann es zu einer Empfindlichkeitsänderung des Detektors auf Gamma-Strahlung kommen. Deshalb ist nach dem Tausch die Kalibrierung zu prüfen und ggf. eine neue Kalibrierung durchzuführen.

Die im Folgenden beschriebenen Tätigkeiten dürfen Sie nur dann durchführen, wenn es sich um einen Detektor handelt, der nicht in einem Ex-Bereich eingesetzt ist.

- ▶ Bauen Sie den Elektronikeinsatz aus, wie auf Seite 2-207 beschrieben.
- ▶ Demontieren Sie den Kristall: lösen und entfernen Sie die Überwurfmutter oben am Überrohr des Multipliers (PMT). Ziehen Sie danach den Kristall vom Multiplier ab.
- ▶ Entfernen Sie das PMT-Überrohr von der Platinenhalterung.
- ▶ Ziehen Sie den Multiplier aus dem Sockel der Elektronik heraus.
- ► Stecken Sie den neuen Multiplier in den Sockel. Bitte beachten Sie die Kodierungs-Nase.
- ► Montieren Sie den Elektronikeinsatz in den Detektor wie auf Seite 2-209 beschrieben.

i WICHTIG

Der Austausch des Multipliers erfordert eine Neueinstellung von Detektorcode und HV-Parametern. Lesen Sie hierzu Band 2, Kapitel 1.6, "Detektorcodes", Seite 2-175, und Band 3, Kapitel 2.38, "**Plateau Measurement**", Seite 3-310.

► Kontrollieren Sie die Funktion der Messung. Sollten sich Abweichungen ergeben, so führen Sie eine Neukalibrierung durch, siehe *Band 3, Kapitel 5*, ab *Seite 3-331*.

Für Bedienoberflächen wie z.B. SIMATIC PDM oder FOUNDATION $^{\text{\tiny TM}}$ Fieldbus gibt es gesonderte Bedienungsanleitungen.

Der Austausch der Kristall-Multiplier-Kombination ist damit abgeschlossen.

54733-20BA1S 2 - 210 55.2025

4.5 Detektor prüfen

Szintillationszähler besitzen keine Verschleißteile und keine Lebensdauerbegrenzung, solange sie unter normalen Umgebungsbedingungen betrieben werden. Funktionsstörungen oder Alterung des Detektors können nur durch mechanische oder thermische Überbeanspruchung hervorgerufen werden.

Als Detektoren werden Szintillationszähler verwendet, da nur diese Detektorsysteme die gewünschte hohe Empfindlichkeit für Gammastrahlung besitzen und die Lebensdauer unabhängig von der Intensität des Strahlenfeldes ist.

Die Zahl der Lichtblitze pro Zeiteinheit ist ein Maß für die Intensität des gemessenen Strahlenfeldes. Die einzelnen Lichtblitze sind sehr kurz, sodass eine hohe Auflösung erreicht wird und dieser Detektor bis zu hohen Zählraten eingesetzt werden kann.

Die Lichtblitze werden in einem *Photomultiplier* (PMT), der optisch mit dem Detektor verbunden ist, in elektrische Signale umgewandelt.

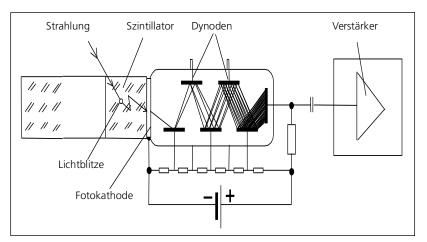


Bild 4-2 Szintillationsdetektor

Der *Punktdetektor* CrystalSENS benutzt einen 50/50 NaI-Kristall als Szintillator, der SuperSENS-Detektor verwendet einen 150/150 Szintillator.

4.5.1 Nal-Punkt-Detektor (CrystalSENS) prüfen

Störungen am Szintillationszähler machen sich nicht immer durch Fehlen der Impulsabgabe bemerkbar, sondern es ist auch möglich, dass sich die spezifische Gamma-Empfindlichkeit scheinbar verändert oder sich auffällige Instabilitäten zeigen. Diese Fehler können bei Detektoren mit NaI-Kristallen nur durch eine Plateauprüfung erkannt werden. Die Detektoren der SENSseries verfügen über eine Funktion zur automatischen Plateauaufnahme. Die Prüfung kann mithilfe des Strahlers an der Messstelle durchgeführt werden oder besser mit einem Teststrahler. Die Messergebnisse sind in einer Kurve aufzutragen (*Bild 4-3*). Der Detektor arbeitet einwandfrei, wenn sich ein deutlich erkennbares Plateau ergibt; dabei spielt die Lage des Plateaus innerhalb des Hochspannungsbereichs keine Rolle. Das Plateau wird automatisch aufgenommen. Siehe hierzu *Seite 3-345*.

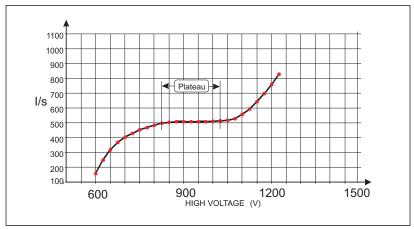


Bild 4-3 Plateaukurve eines NaI-Detektors

Verändert sich die Zählrate mehr als 5% pro 100V (Volt) Hochspannung oder ist das Plateau kürzer als 50V, so wird der Szintillationszähler instabil arbeiten. In diesem Fall sollte der komplette Detektor oder die Kristall-Multiplier-Kombination ausgetauscht werden.

WICHTIG

Die Strahlenbedingungen müssen während der Plateauaufnahme konstant sein!

2 **– 212** 54733-20BA1S 05.2025

4.5.2 Prüfungen der Kristall-Multiplier-Kombination

Fehler an der Kristall-Multiplier-Kombination machen sich durch ein zu kleines oder zu steiles Plateau bemerkbar. Diese lassen sich häufig schon bei einer Sichtprüfung erkennen. Dazu muss die Kristall-Multiplier-Kombination auseinandergenommen werden. Zum Trennen beider Teile ist die Mu-Metallabschirmung zu entfernen und der Kristall ist vorsichtig durch seitliches Verschieben vom Fenster des Multipliers zu lösen. Die optischen Kontaktflächen sind mit einem weichen Lappen von den noch anhaftenden Silikonölresten zu säubern. Während dieser Arbeiten sollte der Multiplier keinem grellen Licht ausgesetzt werden.

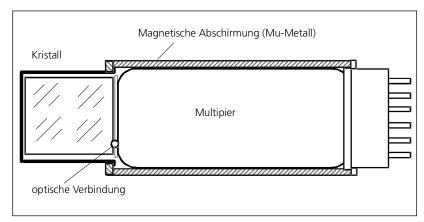


Bild 4-4 Kristall-Multiplier-Kombination

Der Kristall muss innen glasklar erscheinen, er darf weder Risse noch milchige Stellen aufweisen. Die übliche Färbung ist leicht grünlich. Eine deutliche Gelb- bis Braunfärbung deutet auf eine thermische Überlastung hin und macht den Austausch des Kristalls erforderlich.

Das Fenster des Multipliers trägt eine aufgedampfte Schicht als Fotokathode. Diese Schicht färbt das Fenster leicht bräunlich oder rauchglasähnlich. Ist diese Schicht nicht mehr vorhanden oder ist sie fleckig, so ist die Kathode zerstört (z.B. durch Überhitzung, Glasbruch oder Lichteinfall). Der Multiplier muss dann ausgetauscht werden. Fehler, die durch Beschädigung des Dynodensystems (z.B. durch starke Vibrationen) hervorgerufen werden, sind von außen nicht erkennbar. Im Zweifelsfalle ist der Multiplier zu erneuern.

Vor dem Zusammenbau ist ein Tropfen reines Silikonöl (Berthold Id.-Nr. 18844) zwischen Kristall und Multiplier zu bringen und leicht reibend gleichmäßig zu verteilen, damit eine gute optische Verbindung zwischen beiden Teilen gewährleistet ist. Die Mu-Metallabschirmung wird dann mittels einer Verschraubung leicht spannend aufgesetzt.

4.6 Kundendienst

Auch außerhalb Deutschlands ist in vielen Ländern ein Kundendienst für BERTHOLD TECHNOLOGIES-Messsysteme vor Ort verfügbar. Weitere Informationen erhalten Sie auf unserer Website www.Berthold.com.

Sofern Sie die Nummer Ihres zuständigen Servicetechnikers nicht kennen, rufen Sie bitte eine der folgenden Nummern bei BERTHOLD TECHNOLOGIES an:

```
+49 (0) 7081 177-111 (Telefon)
+49 (0) 7081 177-339 (Fax)
+49 (0) 7081 177-0 (Zentrale)
e-mail: Service@Berthold.com
```

Für eine effiziente Hilfe sind folgende Angaben erforderlich:

- Detektor-Typ bzw. "LB"-Nummer, z.B. LB 480
- Angaben zum Fehlererscheinungsbild
- Angaben zur Applikation
 - Produkt, das gemessen wird
 - Einbausituation
 - Messsystem, z.B. Grenzschalter, Punktstrahler mit Crystal-SENS
- Parameter-Listing
- Strahlernummer und/oder BERTHOLD TECHNOLOGIES-Kommissionsnummer
- Kontaktperson und Rückrufnummer

54733-20BA1S 05.2025

4.7 Reparatur, Rückversand

4.7.1 Elektronik, Detektor

Wenn Teile oder ganze Detektoren zur Reparatur zurückgeschickt werden, bitten wir Sie, folgende Angaben beizulegen:

- Detektor-Typ bzw. "LB"-Nummer, z.B. LB 480
- Angaben zum Fehlererscheinungsbild
- Lieferadresse
- Rechnungsadresse
- Ihre Bestellnummer (falls erforderlich)
- Bevorzugte Beförderungsart (falls notwendig)
- Zoll-Wert (sofern über eine Grenze verschickt wird)

Lieferadresse von BERTHOLD TECHNOLOGIES:

BERTHOLD TECHNOLOGIES GmbH & Co. KG

Service-Abteilung

Calmbacher Str. 22

75323 Bad Wildbad

4.7.2 Strahler und Abschirmung

Wenn Strahler und/oder Abschirmungen zur Reparatur geschickt werden sollen, wenden Sie sich bitte an den Transportbeauftragten von BERTHOLD TECHNOLOGIES zur Klärung der Details:

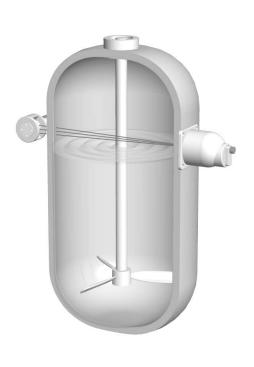
+49 (0) 7081 177-219 (Telefon)

Für die Bearbeitung sind folgende Angaben erforderlich:

- Name, Anschrift und Telefonnummer des Strahlenschutzbeauftragten
- Anzahl der Strahler
- Strahlernummer(n)
- Isotop und Aktivität
- Datum der letzten Dichtheitsprüfung
- Zustand der/des Strahler(s) und der Abschirmung(en)
- Informationen über den Typ der Abschirmung, mit der der Strahler transportiert werden soll (falls vorhanden)
- Proforma-Rechnung für den Strahler und die Abschirmung, in der der Strahler zurückgeliefert wird (nur für Zollzwecke und nur bei grenzüberschreitendem Transport)

Die Beförderung erfolgt dann je nach Situation mit einer speziell für Strahlertransporte ausgebildeten Spedition oder per Luftfracht.

5


Technische Informationen

5.1 TI LB 480 Grenzhöhenschalter

Technical Information Level Switch LB 480

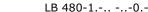
Level Switch Grenzschalter

Field mounted components Messstellen-Komponenten

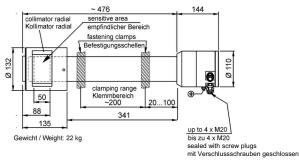
*BE*ŖŢĦQĻ₽...

Dimensions in mm Abmessungen in mm

1.0 CrystalSENS (Version f. Zone 1/2)

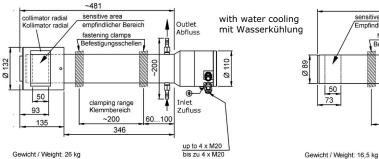

LB 480-1.-0.

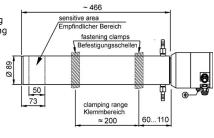
LB 480-1.-1.

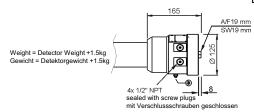

LB 480-1.-2.

LB 480-1.-Z.

LB 480-1.-.. -..-r.-




Gewicht / Weight: 12,5 kg

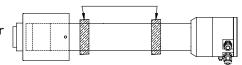

with water cooling

1.1 CrystalSENS (Version f. Divisions 1/2)

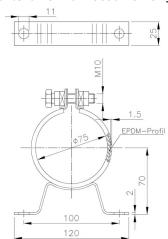
LB 480-1.-F. LB 480-1.-G.

The detector version for divisions (NEC/CEC) differs only in the terminal housing, compared to the standard version illustrated above. The dimensions of this terminal housing are illustrated in this drawing.

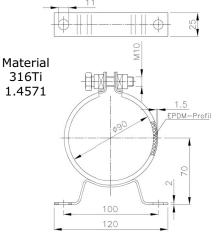
Die Detektor-Version mit Ex-Zulassung für Divisions (NEC/CEC) unterscheidet sich ausschließlich im Anschlusskopf, verglichen mit der oben aufgeführten Standardvariante. Die Abmessungen für den Anschlusskopf sind aus dieser Zeichnung zu entnehmen.


1.2 CrystalSENS Scintillator Size / Szintillatorgröße

Type Typ	Scintillator Size Szintillatorgröße	(Ø/h)	Water cooling Wasserkühlung
LB 480-11	50/50		-
LB 480-12	50/50		✓
LB 480-13	40/35		-
LB 480-14	40/35		✓
LB 480-15	25/25		-
LB 480-16	25/25		✓

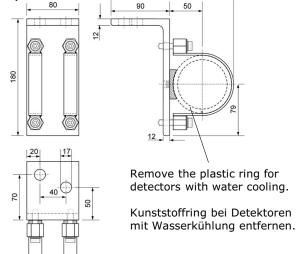


Dimensions in mm Abmessungen in mm


1.3 Mounting Clamps for Detector Befestigungsschellen für Detektor

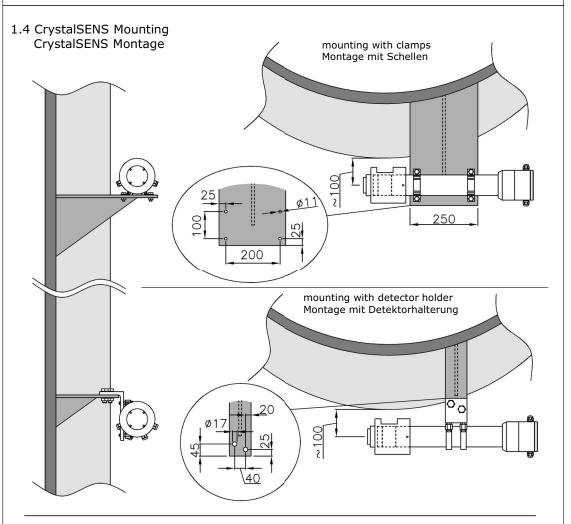
for Detectors without water cooling für Detektoren ohne Wasserkühlung

for Detectors with water cooling für Detektoren mit Wasserkühlung



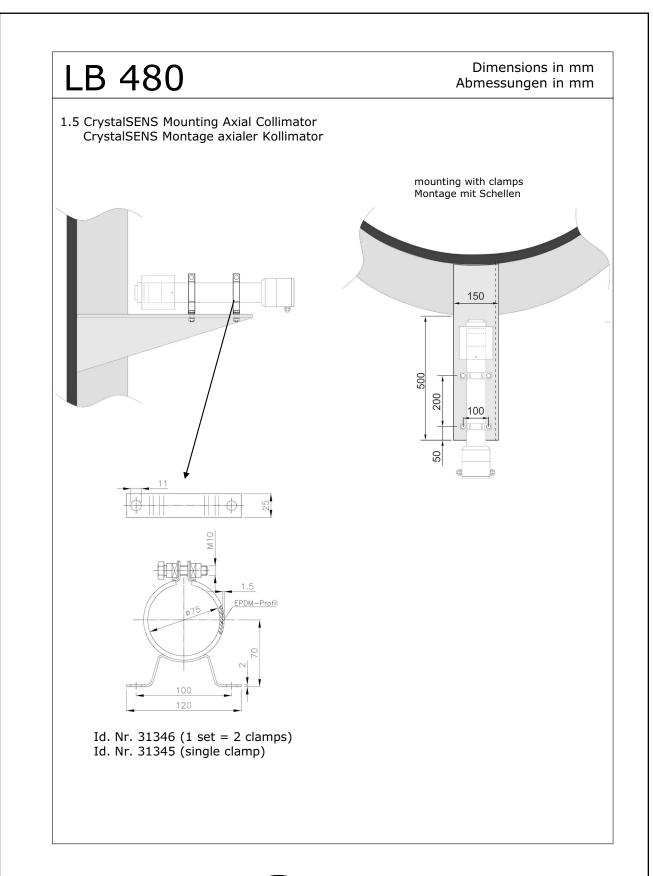
Id. Nr. 31346 (1 set = 2 clamps) Id. Nr. 31345 (single clamp) Id. Nr. 31347 (1 set = 2 clamps) Id. Nr. 31344 (single clamp)

position for the clamps, see detector drawing Position für die Schellen-Befestigung siehe Detektor-Zeichnung


Heavy Duty Detector Holder (stainless steel) Robuste Detektor Halterung (Edelstahl)

Part No. Id. Nr.	for Detector für Detektor
39246	without water cooling ohne Wasserkühlung
39247	with water cooling mit Wasserkühlung

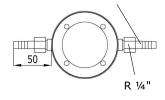
Dimensions in mm Abmessungen in mm

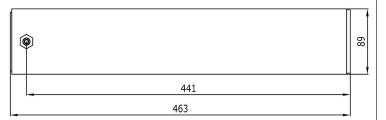

Sun Roof against Strong Sun Radiation Sonnendach gegen starke Sonneneinstrahlung

Direct sun radiation can overheat the detector. If the detector temperature can reach more than 50°C, a suitable sun roof must be installed. The heating of the detector by thermal radiation from the vessel can also be moderated by a thermal sheet, e.g. by a thin metal plate. For each detector a water cooling (option) is available.

Wird durch Sonneneinstrahlung eine Detektortemperatur von über 50°C erreicht, so ist ein geeigneter Sonnenschutz zu montieren. Auch die Aufheizung des Detektors durch Wärmeabstrahlung vom Behälter kann durch ein dünnes Wärmeableitblech gemildert werden. Für jeden Detektor steht auch eine geeignete Wasserkühlung (Option) zur Verfügung.

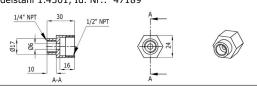
(BERTHOLD

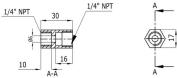




Dimensions in mm Abmessungen in mm

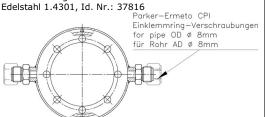
1.6 CrystalSENS Water Cooling Jacket and Adaptor Fittings CrystalSENS Wasserkühlung und Adapter Anschlussstücke


pipe connection diameter 10 Schlauchanschluss \emptyset 10


Fitting adaptor for standard water cooling Rp 1/4" $\rightarrow 1/2$ " NPT stainless steel 304, part no: 47189

Adapter für Standard Wasserkühlung Rp 1/4" $\rightarrow 1/2$ " NPT Edelstahl 1.4301, Id. Nr.: 47189

Fitting adaptor for standard water cooling Rp 4 > 4" NPT stainless steel 304, part no: 46743

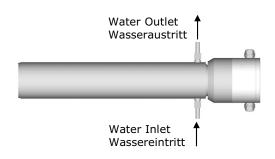

Adapter für Standard Wasserkühlung Rp 4 > 4" NPT Edelstahl 1.4301, Id. Nr.: 46743

Water cooling jacket with Parker Ermeto Fittings stainless steel 304, part no: 37816

Wasserkühlung mit Parker Ermeto Anschlüssen

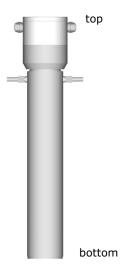
Further fitting adaptors for standard water cooling jacket: Rp $\frac{1}{4}$ "> $\frac{1}{2}$ " NPT male, stainless steel 304, part no: 06352 Rp $\frac{1}{4}$ "> $\frac{1}{4}$ " NPT male, stainless steel 304, part no: 06349 Weitere Adapter für die Standard-Wasserkühlung: Rp $\frac{1}{4}$ "> $\frac{1}{2}$ " NPT Außengewinde, 1.4301, Id. Nr.: 06352 Rp $\frac{1}{4}$ "> $\frac{1}{4}$ " NPT Außengewinde, 1.4301, Id. Nr.: 06349

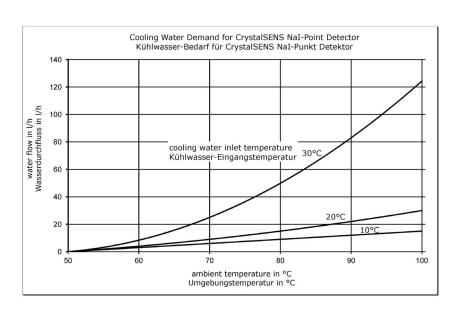
The above mentioned water cooling jackets and adaptor fittinigs offers following connection versions: Die oben aufgeführten Wasserkühlungen und Adapter ermöglichen folgende Anschlussvarianten:


Fitting Connection	Anschluss-Stutzen	part no. (material) Id.Nr. (Werkstoff)
R ¼" pipe connection, male European standard Whitworth pipe thread	R ¼" Außengewinde für Rohrverschraubung europäisches Standard Whitworth-Rohrgewinde	21326 (304/1.4301) 38055 (Carbon Steel St37)
10 mm hose connection for water hose connection ID 10 mm	Schlauchstutzen für Schlauch- Innendurchmesser 10 mm	21326 (304/1.4301) 38055 (Carbon Steel St37)
fitting adaptor ½" NPT female	Adapter mit ½" NPT Innengewinde	47189 (304/1.4301)
fitting adaptor ¼" NPT female	Adapter mit ¼" NPT Innengewinde	46743 (304/1.4301)
fitting adaptor ½" NPT male	Adapter mit ½" NPT Außengewinde	06352 (304/1.4301)
fitting adaptor ¼" NPT male	Adapter mit ¼" NPT Außengewinde	06349 (304/1.4301)

Dimensions in mm Abmessungen in mm

1.7 Water Cooling Installation Instruction
Anweisung zur Installation der Wasserkühlung

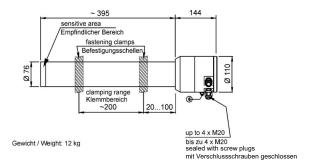

Horizontal Detector Installation Horizontale Detektor Installation


In order to fill the entire water cooling jacket, incoming water must enter from the bottom. Damit sich die Wasserkuhlung vollständig mit Wasser füllt, muss der Wasserzufluss von unten erfolgen.

Vertical Detector Installation Vertikale Detektor Installation

Install the Detector with the connection at the top.
Installieren Sie den Detektor mit dem Anschlussgehäuse oben.

1.8 Detector Cooling Water Demand Detektor Kühlwasserbedarf



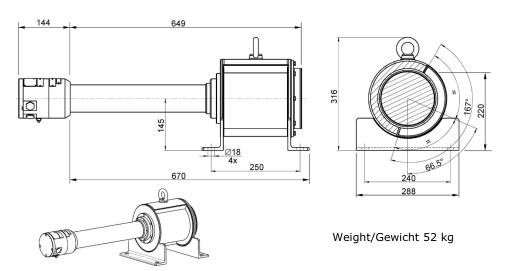
Dimensions in mm Abmessungen in mm

1.8 CrystalSENS 44/5 f. Am-241 (none Ex, nicht-Ex)

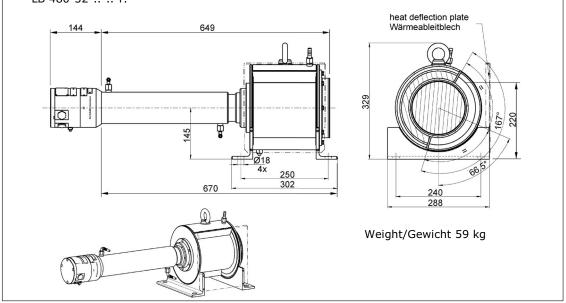
LB 480-17-00 -..-0.-LB 480-17-Z0 -..-0.-

Dimensions in mm Abmessungen in mm

2. SuperSENS (Version f. Zone 1/2)

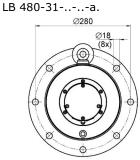

LB 480-3.-0. LB 480-3.-1.

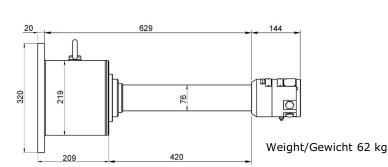
LB 480-3.-2.


LB 480-3.-Z.

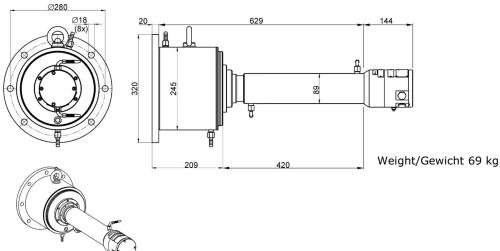
2.1 with Side Irradiation mit seitlicher Einstrahlung

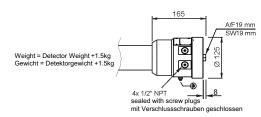
LB 480-31-..-r.


2.2 with Side Irradiation and Water Cooling mit seitlicher Einstrahlung und Wasserkühlung LB 480-32-..-r.



Dimensions in mm Abmessungen in mm


2.3 with Axial Irradiation mit frontaler Einstrahlung

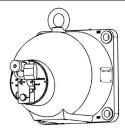

2.4 with Axial Irradiation and Water Cooling mit frontaler Einstrahlung und Wasserkühlung

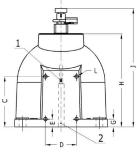
LB 480-32-..-a.

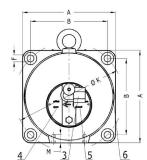
2.5 SuperSENS (Version f. Divisons 1 + 2)

LB 480-3.-F. LB 480-3.-G.

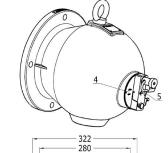
The detector version for divisions (NEC/CEC) differs only in the terminal housing, compared to the standard version illustrated above. The dimensions of this terminal housing are illustrated in this drawing

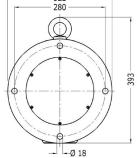

Die Detektor-Version mit Ex-Zulassung für Divisions (NEC/CEC) unterscheidet sich ausschließlich im Anschlusskopf, verglichen mit der oben aufgeführten Standardvariante. Die Abmessungen für den Anschlusskopf sind aus dieser Zeichnung zu entnehmen.

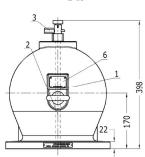

BERTHOLD


Dimensions in mm Abmessungen in mm

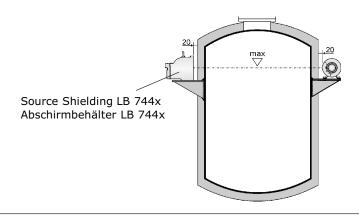
3.0 Point Source Shielding LB 744x Punktstrahler-Abschirmbehälter LB 744x

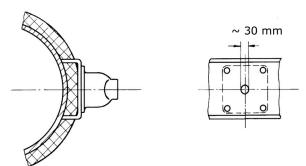


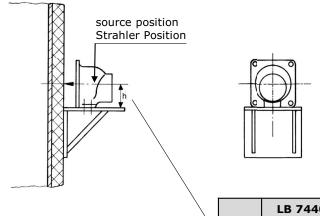




- 1 Strahler
- 2 Strahlenausgang
- 3 Schloss
- 4 Position **Offen**
- 5 Position **Geschlossen**
- 6 Typenschild
- 1 Point Source
- 2 Radiation Exit
- 3 Lock
- 4 Position **Open**
- 5 Position Closed
- Type Label

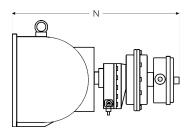

Housing Gehäuse	Type Typ	A	В	С	D	E	FØ	G	н	J	κø	٦	М	Å	kg					
Carbon Steel St 37	LB 7440-F-CR LB 7445-F-CR	180	142	75	60	15	18	20	173	238	200	M8	12	16°	31					
Super Duplex UNS 32750	LB 7440-FE-CR LB 7445-FE-CR	100	142	/5	60	15	10	20	1/3	236	200	MO	12	10-	31					
SAF 2507 1.4410	LB 7442-FE-CR	240	240	240	240	240	240	198	130	80	20	10	20	242	206	280	M10	1.4	go	81
Carbon Steel	LB 7442-F-CR LB 7446-F-CR	240	198	130	80	20	18	20	242	306	280	MIO	14	9,	81					
St 37	LB 7444-CR		Dime	ensior	ns in d	drawir	ng / A	bmes	sunge	en in 2	Zeichr	nung		6°	170					


Radiation Angle of the Shielding / Abstrahlwinkel der Abschirmung


Dimensions in mm Abmessungen in mm

3.1 Mounting Proposal for Source Shielding LB 744x Montagevorschlag für Abschirmbehälter LB 744x

Flange Installation Flanschinstallation


Pedestal Installation Sockelinstallation

	LB 7440 LB 7445	LB 7442 LB 7446	LB 7444
h	90	120	161

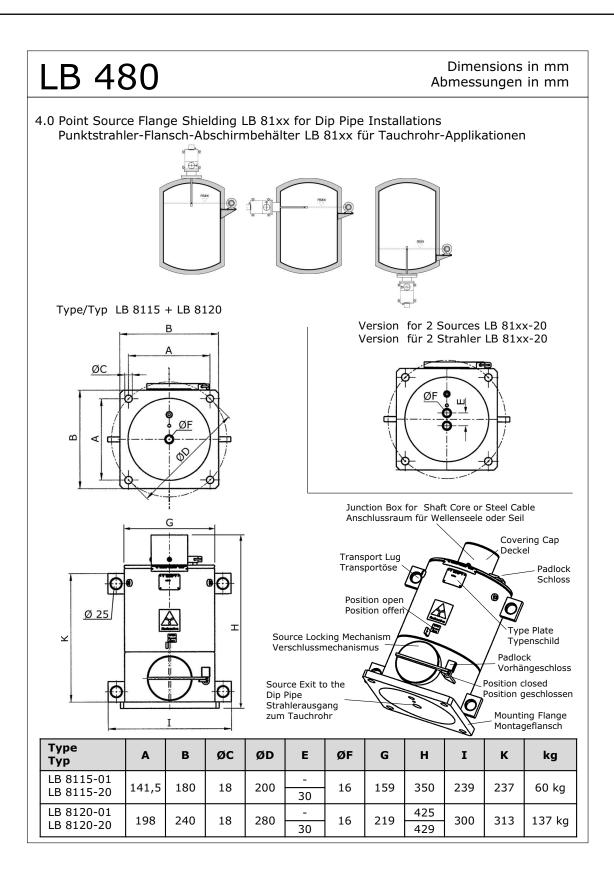
BERTHOLD...

Dimensions in mm Abmessungen in mm

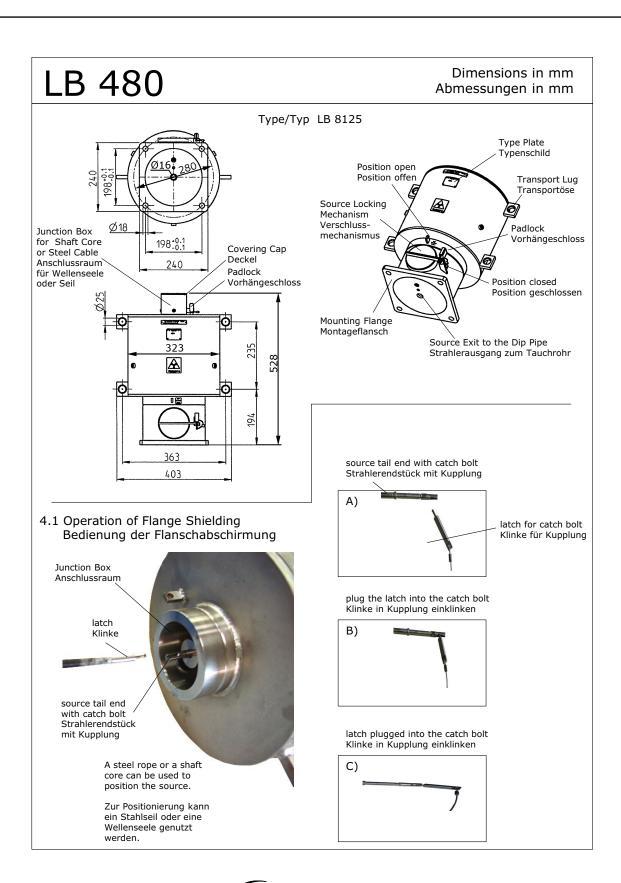
3.2 Pneumatic Actuator for Source Shielding LB 744x
Pneumatischer Verschlussantrieb für Abschirmbehälter LB 744x

N approx / ca.	Туре / Тур
390	LB 7440-F-CR LB 7440-D-CR LB 7440-FE-CR LB 7440-DE-CR
460	LB 7442-F-CR LB 7442-D-CR LB 7442-FE-CR LB 7442-DE-CR
570	LB 7444-CR

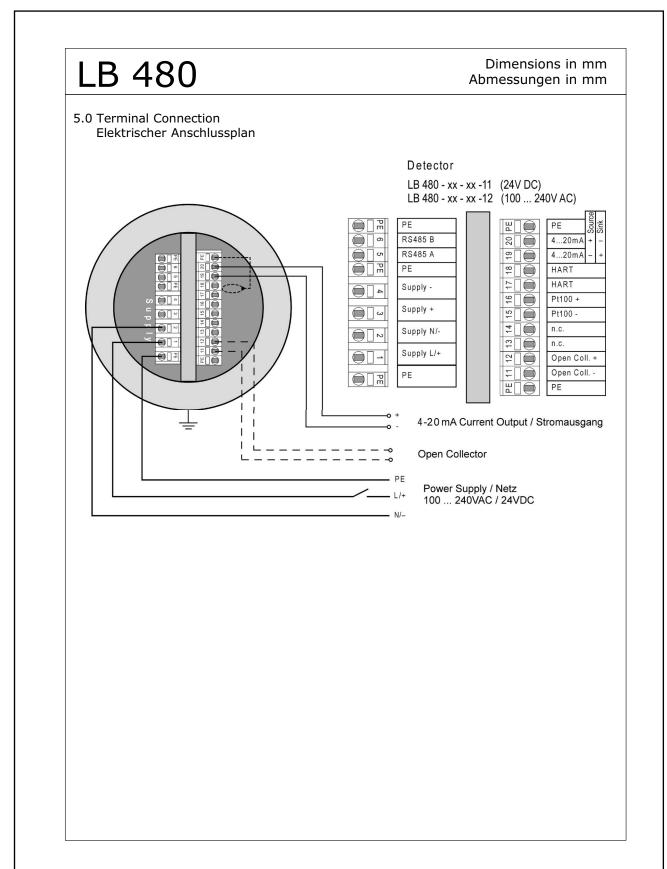
Protection Schutz	Part No. Ident.	Description Beschreibung
IP 65	36119	Pneumatic Actuator with Limit Switch Pneumatischer Verschlussantrieb mit Endschalter
Ex de IIC T6	80919	Pneumatic Actuator with Limit Switch with ATEX Pneumatischer Verschlussantrieb mit Endschalter with ATEX


Technical Data for Pneumatic Actuator Technische Daten für pneumatischen Verschlussantrieb					
Compressed Air Druckluft	min. 4×10^5 Pa (4 bar) max. 7×10^5 Pa (7 bar) Connection / Anschluss: G 1/8				
Air Quality Luftqualität:	clean as usual for air compressed tools, oil free Sauber wie für Druckluft-Werkzeuge üblich, ölfrei				
Temperature Range Temperaturbereich:	-20°C +80°C				

Limit Switch, Option for Signaling OFF / CLOSED Endschaltereinheit, Optionen für Signalisierung AUF / ZU					
Option I:	IP 65, 2 contacts (OFF/CLOSED) IP 65, 2 Kontakte (AUF/ZU)				
Option II:	2 contacts (OFF/CLOSED) Protection for internal micro switches: EEx d IIC T6 Housing protection: EEx e II T6 2 Kontakte (AUF/ZU) Schutzart der Microeinbautaster: EEx d IIC T6 Gehäuseschutzart: EEx e II T6				
Option III:	2 Proximity switches for intrinsically safe power supply 2 Näherungsinitiatoren für Eigensichere Speisung				



LB 480 Dimensions in mm Abmessungen in mm 3.3 Components for Pneumatic Actuator Einzelteile für Pneumatischen Verschlussantrieb Pneumatic Actuator Return Spring Pneumatischer Antrieb Rückstellfeder male square spin-type handle as position indicator, or for manual operation Außenvierkant zur Stellungsanzeige, oder manueller Betätigung adjustable cam verstellbare Nocken Cable Gland Kabelverschraubung Limit Switch in Ex de Limit Switch in IP 65 Endschaltereinheit in IP 65 Endschaltereinheit in Ex de Cable Diameter 6 ... 12 mm Cable Diameter 9 ... 12 mm Kabeldurchmesser 6 ... 12 mm Kabeldurchmesser 9 ... 12 mm Load / Last (A) Volt Load / Last (A) Volt Contact Rating Kontaktbelastbarkeit Contact Rating Kontaktbelastbarkeit AC DC R ACDC R Lamp / Lampe 250 250 15 3 1,5 125 7 5 125 15 3 30 7 5 12 15 3 1,5 75 1 24 10 2 1 125 48 0,5 0,06 3 0,6 0,3 250 250 0,05 0,25 0,03 0,25 0,025


BERTHOLD.

(BERTHOLD...

6

Zubehör

6.1 Kabelverschraubungen

Die Abdichtung der Verschraubungen auf das Kabel kann je nach Verschraubung aus mehreren Dichtringen bestehen, die an den Durchmesser des Kabels angepasst werden müssen. Durch die in der Verschraubung eingelegten Dichtringe wird ein relativ großer Kabel-Einspannbereich erreicht. Entnehmen Sie die Dichtringe ggf. aus der Verschraubung um sie dem verwendeten Kabeldurchmesser anzupassen. Eine Zusammenstellung der von BERTHOLD TECHNOLOGIES lieferbaren Verschraubungen finden sie im Handbuch für den Explosionsschutz auf *Seite 1-50*.

Im folgenden ein Beispiel für eine metrische M20-Kabelverschraubung mit zusätzlichem Dichtring für kleine Kabeldurchmesser, der für größere Durchmesser zu entfernen ist.

Montageanleitung für Id. Nr. 55412 und 56086.

blueglobe® mit kleinem Kabeldurchmesser Bei IP 68 Installationen globemarker® außenliegend

blueglobe® with small cable diameter With IP 68 installations globemarker® on the outside

Abb. 1 Fia. 1

blueglobe® mit kleinem Kabeldurchmesser oder globemarker® entfernen

blueglobe® with small cable diameter or removing globemarker®

Abb. 2

blueglobe® mit großem Kabeldurchmesser Bei großem Kabeldurchmesser Inlet entfernen: Schraubendreher senkrecht in Trennnaht einstechen

blueglobe® with large cable diameter With a large cable diameter – remove inlet. Insert screwdriver vertically into separating seam

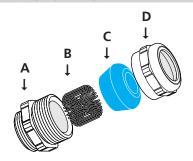
Abb. 3

blueglobe® mit großem Kabeldurchmesser Inlet aushebeln

blueglobe® with large cable diameter Lift out the inlet

Fig. 4

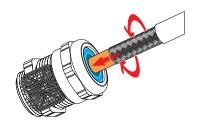
6 Zubehör Band 2


Montageanleitung für Id. Nr. 56091

blueglobe TRI® – Montageanleitung

blueglobe TRI® - Assembly Instruction

Übersicht Bestandteile Overview components


Doppelnippel (A), Feder (B), Globe-Dichteinsatz (C), Druckschraube (D)
Double nipple (A), spring (B), globe-sealing insert (C), pressure screw (D)

Schritt 2 – Montage

Step 2 - Installation

Kabel mit leichter Drehung einführen Install cable with slight turn

Schritt 4 – Montage

Step 4 - Installation

Kabel gemäß Maß a zurückziehen (siehe Tabelle unten) Withdraw cable acc. size a (see table)

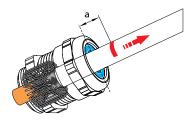
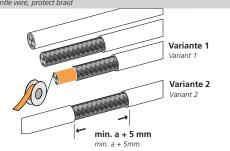
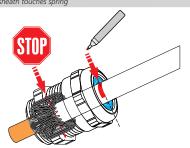



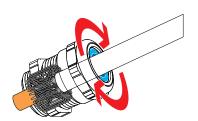
Tabelle Table

Artikel Article	a/mm a/mm	Nenndrehmoment/Nm Nominal torque/Nm	
bg 212mstri	7	5	
bg 216mstri	8	8	
bg 220mstri	9	10	
bg 225mstri	10	15	Ī
bg 232mstri	11	15	
bg 240mstri	13	20	
bg 250mstri	15	30	
bg 263mstri	15	35	
bg 275mstri	15	80	
ba 285mstri	15	100	


Schritt 1 – Vorbereitung der Montage Step 1 – Prepare installation

Leitung abmanteln, Geflecht mit Isolierband schützen
Dismantle wire, protect braid

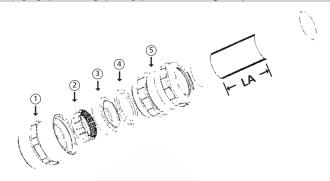
Schritt 3 – Montage Step 3 – Installation


Markieren, wenn der Kabelmantel die Feder berührt Mark when cable sheath touches spring

Schritt 5 – Montage

Step 5 - Installation

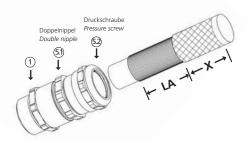
Druckschraube mit Drehmoment festziehen (siehe Tabelle unten)Fix pressure screw with nominal torque (see table)



Montageanleitung für Id. Nr. 56088 und 56103

blueglobe® AC – Montageanleitung blueglobe® AC – Assembly Instruction

Übersicht Bestandteile


Overview components

Schritt 1 – Vorbereitung der Montage

Step 1 – Prepare installation

- 1. Leitung abmanteln, Armierung kürzen gemäß Tabelle (siehe unten) 1. Dismantle wire, cut armour according table 1 (see below)
- 2. Adapter ① mit Nenndrehmoment 1 gemäß Tabelle (siehe unten) einschrauben (Komplettverschraubung AC nicht öffnen)
 2. Fix adapter ① with torque 1 according table (see below) (do not open complete AC gland)

Schritt 2 – Montage

- 1. Kabel mit Länge X einführen, gemäß Tabelle (siehe unten) 1. Install cable with length X according table (see below)
- 2. Doppelnippel 🕄 mit Nenndrehmoment 1 gemäß Tabelle (siehe unten) anziehen zum Kontaktieren
- 2. Fix double nipple (5) with torque according table (see below) for contact
- 3. Druckschraube mit Nenndrehmoment 2 gemäß Tabelle (siehe unten) anziehen zur Abdichtung 3. Fix pressure screw with torque 2 according table (see below) for tightness

Tabelle Table

Artikel Article	LA/mm LA/mm [min]	X/mm X/mm	Drehmoment 1/Nm Torque 1/Nm für/for (1) + (51)	Drehmoment 2/Nm Torque 2/Nm für/for ☑
220bg220msAC13	20	35	15	10
220bg225msAC15	22	37	15	15
225bg225msAC17	22	37	15	15
232bg232msAC23	26	40	25	15
232bg240msAC27	28	43	40	15
240bg240msAC31	28	43	20	20
250bg250msAC36	32	49	50	30
250bg250msAC40	32	49	50	30
263bg263msAC46	32	50	50	35
263bg263msAC51	32	50	50	35
275bg275msAC61	36	62	80	80
285bg285msAC70	38	64	100	100
285bg285msAC78	38	64	100	100

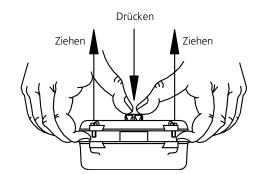
Zubehör Band 2

6.2 **Endschalter für Pneumatik**

Einbau- und Einstellanweisung für **Endschaltermodule von KINETROL** ... -003U FFx ed IIC T6 und ... -004U

WICHTIG

Wird die Endschaltereinheit ... -003U separat ausgeliefert, muss sie bis zur Verwendung im Kunststoffbeutel gelagert werden. Die Zertifizierung behält nur dann ihre Gültigkeit, wenn die Endschaltereinheit korrekt auf den Schwenkantrieb aufgebaut wird.

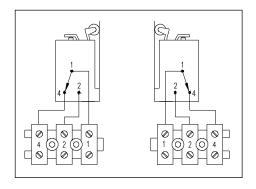

Für den indirekten Aufbau kann die Endschaltereinheit auf Kundenwunsch mit Anbauabmessungen nach VDI/VDE 3845 oder nach KINETROL-Werksnorm (siehe unten) geliefert werden.

Direktmontage

- Den Deckel der angelieferten Endschaltereinheit abschrauben und wie im nebenstehenden Bild gezeigt bei gleichzeitigem Druck auf die Endschalterwelle abziehen. ACHTUNG: Deckeldichtung nicht verlieren!
- Wellen-Haltebügel durch Lösen der Schrauben entfernen und Endschalterwelle entnehmen.
- Schwenkantrieb in Schraubstock spannen (Weichbacken benutzen)
- Montagegewinde mit LOCTITE o.Ä. versehen, mitgelieferte Korkdichtung auflegen und das Unterteil der Endschaltereinheit aufsetzen. Mit den beiliegenden Schrauben festschrauben.
- Die an der Endschalterwelle befindlichen zwei Schaltnocken sind mit je 1 Schraube geklemmt. Diese Schrauben lockern.
- Endschalterwelle mit dem Innenvierkant auf den oberen Wellenvierkant des Antriebes bzw. der Federschlusseinheit setzen. NICHT HÄMMERN - KEINE GEWALT!
- Wellen-Haltebügel wieder einbauen.

Einstellen der Schaltnocken

- Drehflügel des Schwenkantriebes in Ausgangslage bringen. ACHTUNG: Die Endanschläge des Schwenkantriebes sollten bereits eingestellt sein, um eine nachträgliche Korrektur der Schaltnocken überflüssig zu machen.
- Den zutreffenden Schaltnocken so weit auf dem Führungsring verschieben, bis ein leises Knacken zeigt, dass der Kontakt des Mikro-Einbautasters (... -3U) bzw. Mikrowechslers (... -4U) geschaltet hat. Schaltnocken zur Sicherheit etwa 2-3 Grad weiter verschieben und Klemmschraube festziehen.
- Drehflügel in die entgegengesetzte Endlage fahren. Bei einfach wirkenden Schwenkantrieben mit Federschlusseinheit ist dazu Druckluft notwendig.
- Mit zweitem Schaltnocken entsprechend verfahren.

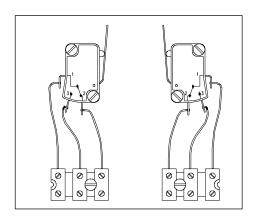


54733-20BA1S 05.2025

Technische Spezifikation / elektrisch anklemmen

... -3U

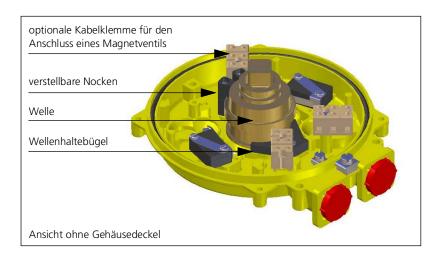
BARTEC 07-1501-6120-63 (Schließer) für Antriebsgröße 02/03 BARTEC 07-1501-6130-63 (Wechsler) für Antriebsgröße 05-14


Volt		Last (A)				
AC	DC	Widerstand	induktiv (max.)			
250		7	5			
125		7	5			
	bis 12	7	5			
	bis 24	1	1			
	bis 48	0,5	0,06			
	bis 250	0,3	0,03			

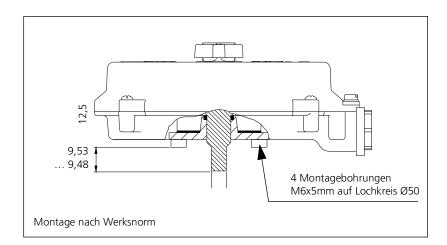
... -4U

2 Mikrowechsler

2 Mikroeinbautaster


Normalabmessungen nach DIN41635

Volt		Last (A)			
AC	DC	Widerstand	induktiv (max.)	Lampen	
250		15	5	1,5	
125		15	5	1,5	
	bis 12	15	5	1,5	
	bis 24	10	1	1	
	bis 48	3	0,06	0,3	
	bis 250	0,25	0,03	0,025	


Material: ... -3U und ... -4U

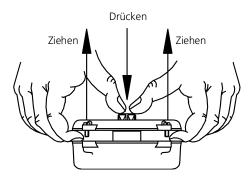
	KINETROL3U	KINETROL4U			
Gehäuse	Zinkdruckguss				
Beschichtung	Epoxydharz, eingebrannt				
Dichtung	O-Ringe (Nitril)				
Temperaturbereich	-25°C bis +60°C	-20°C bis +80°C			
Gewicht	1,4 kg				
Kabeleingänge	M20x1,5	M20x1,5; PG13,5; ½" NPT; 4-poliger Stecker (DIN 43650A)			
Kabelklemme	Anschlussquerschnitt 2,5mm², Schutzleiterklemme 2,5mm², Erdungsklemme 4,0mm²				
Schutzart	IP54-65				

Montageschraube (mit LOCTITE etc. sichern) Korkdichtung

Technische Spezifikation / elektrisch anklemmen

Ziehen Sie nach dem Anklemmen die Stopfbuchsenverschraubung dicht an.

i wichtig


Direktmontage

Vergewissern Sie sich, dass die Deckeldichtung in ihrer Nut eingelegt ist!

Fetten Sie den Gehäusedeckel in der Wellendurchführung leicht mit $\mbox{MoS}_2\mbox{-Fett}$ ein, setzen Sie ihn auf und ziehen Sie die Deckelschrauben an.

6 Zubehör Band 2

Korrektur der Schaltpunkte bei Antrieben mit bereits montiert angelieferter Endschaltereinheit

Direktmontage

- ▶ Den Deckel der angelieferten Endschaltereinheit abschrauben und wie im nebenstehenden Bild gezeigt bei gleichzeitigem Druck auf die Endschalterwelle abziehen. ACHTUNG: Deckeldichtung nicht verlieren!
- ► Wellen-Haltebügel durch Lösen der Schrauben entfernen und Endschalterwelle entnehmen.
- Montagegewinde mit LOCTITE o.ä. versehen, mitgelieferte Korkdichtung auflegen und das Unterteil der Endschaltereinheit aufsetzen. Mit den beiliegenden Schrauben festschrauben.
- ▶ Die an der Endschalterwelle befindlichen zwei Schaltnocken sind mit je 1 Schraube geklemmt. Diese Schrauben lockern.

Weitere Schritte siehe "Einstellen der Schaltnocken" auf Seite 2-238 und "Technische Spezifikation / elektrisch anklemmen" ab Seite 2-239

54733-20BA1S 2 - 242 05.2025

2

Notizen:

Änderungen im Zuge technischer Weiterentwicklung vorbehalten.						

BERTHOLD TECHNOLOGIES GmbH & Co. KG

© BERTHOLD TECHNOLOGIES GmbH & Co. KG 2009

Calmbacher Str. 22 D-75323 Bad Wildbad Germany

05.2025

Germany
www.Berthold.com
Id.-Nr. 54733-20BA1S

Sprache: Deutsch

Rev.-Nr.: 06

Printed in Germany

Band 3 Bedienung mit HART®-Kommunikator

54733-20BA1S 3 - 246 05.2025

HART[®]-Kommunikation

LB480 LevelSwitch

Certificate of Registration FieldComm Group Verified

Manufacturer Product Name

00A1 A17B

Berthold Technologies GmbH & Co. KG

Manufacturer ID (Hex) Expanded Device Type (Hex)

7 01
HART Protocol Revision Device Revision (Hex)

0105Hardware Revision (Hex)Software Revision (Hex)

8/20/2014 FieldComm Group
Test Date Verification Method

The above product has successfully completed the validation process and meets the requirements to be "HART REGISTERED".

"HART REGISTERED" products conform to GB/T 29910.1-6-2013 and IEC 61158 standards.

Registration Number: L2-06-1000-382 Registration Issue Date: 4/16/2015 Approval:

HART® is a registered trademark of FieldComm Group

Mit folgenden Hosts kann das LB 480 bedient werden:

- HART®-Kommunikator (375/475) von Emerson Process
- Siemens Simatic PDM
- AMS DeltaV von Emerson Process

1.1 HART®-Protokoll

Die Messwerte werden über die folgenden $\mathsf{HART}^{\$}\text{-Variablen}$ übertragen:

 PV - Prozesswert (bei Füllstand %, bei Dichte die gewählte Einheit)

Ab Softwareversion 01.01.00 sind zusätzlich die folgenden Variablen verfügbar:

- SV CPS ungemittelt
- TV CPS gemittelte (abhängig von der Zeitkonstanten)
- QV Detektor Temperatur

Die SENSseries LB 480 ist ${\sf HART}^{\it l}$ -7 kompatibel, siehe Zertifikat.

Device Descriptions (DD) können auf der Homepage der HCF herunter geladen werden.

https://fieldcommgroup.org/registered-products/

1.2 Allgemeines zum HART®-Kommunikator

WICHTIG

Änderungen der Parameter beeinflussen das Verhalten evtl. angeschlossener Regler und können zu ungewollten Betriebszuständen führen.

Änderungen an der Parametereinstellung dürfen deshalb nicht ohne genaue Kenntnis dieser Bedienungsanleitung sowie genauer Kenntnis über das Verhalten eines angeschlossenen Reglers und die möglichen Einflüsse auf den zu steuernden Betriebsprozess vorgenommen werden.

Das Messsystem SENSseries LB 480 ist kompatibel mit dem HART®-Kommunikator Modell 375 ab Firmware 3.0 und dem Modell 475 (HART®-Kommunikator, HART = Highway Addressable Remote Transducer) der Firma Emerson Process Management GmbH & Co. OHG. Sie können aber auch andere HART®-kompatible Kommunikatoren verwenden, die Enhancements unterstützen. Der HART®-Kommunikator verwendet die Bell 202 Frequency-Shift-Keying-Technik zur Überlagerung von hochfrequenten digitalen Kommunikationssignalen auf die Standard 4–20mA-Stromschleife. Der Mindest-Belastungswiderstand auf der 4–20mA-Schleife muss 2500hm betragen.

Im Benutzerhandbuch für den ${\sf HART}^{\it \&le }$ -Kommunikator finden Sie weitere Informationen über die Verwendung der Tasten, Dateneingabe und Schnittstelle.

1.3 HART®-Kommunikator anschließen, ein- und ausschalten

Explosionsgefahr!

In Ex-Bereichen darf ein HART[®]-Kommunikator nur unter folgenden Voraussetzungen angeschlossen werden:

- der Stromausgang des Messsystems SENSseries LB 480 ist eigensicher
- der HART[®]-Kommunikator ist eigensicher
- der HART[®]-Kommunikator wurde zuvor niemals an nicht-eigensicheren spannungsführende Leitungen angeschlossen.

Der Kommunikator darf erst eingeschaltet werden, nachdem er an den $\mathsf{HART}^{\$}\text{-}\mathsf{Stromausgang}$ angeschlossen wurde. Sonst ist eine Kommunikation mit dem Detektor nicht möglich.

Für eine sichere HART®-Kommunikation ist eine Impedanz von mindestens 250 und maximal 5000hm am Stromausgang erforderlich.

Sobald Detektor und Kommunikator verbunden sind und ordnungsgemäß in Betrieb genommen wurden, erscheint das Start-Menü (siehe *Seite 3-261*).

Aus diesem Menü können Sie direkt die Option **Live Display** für die Online-Anzeige der Messwerte wählen. Die Messdaten sind nur dann gültig, wenn die Sonde kalibriert und parametriert wurde.

Der Kommunikator darf nur abgeschaltet bzw. abgeklemmt werden, nachdem eine eventuelle Parameteränderung des Detektors abgeschlossen wurde.

1.4 HART®-Kommunikator bedienen

Der Kommunikator lässt sich einfach bedienen:

- Verwenden Sie die Pfeiltasten, um einen Menüpunkt anzuwählen und drücken Sie dann die Taste mit dem Pfeil nach rechts oder die ENTER-Taste. Als Alternative können Sie auch die vor den meisten Menüeinträgen angegebene Zahl auf dem Ziffernfeld drücken, dann wird der Menüpunkt sofort aufgerufen.
- Um Angaben oder Daten zu ändern, verwenden Sie die "Softkeys", auf denen die jeweils gültige Funktion abgebildet ist, wie, z. B. SAVE, ABORT (Abbrechen), OK, ENTER oder SEND. Mit HOME gelangen Sie wieder zum Start-Menü zurück (siehe Kapitel 2.3, "Start-Menü", Seite 3-261).
- Verwenden Sie das Ziffernfeld, falls die Eingabe von Zahlen benötigt wird. Mit diesen Tasten können Sie bei einigen Menüpunkten auch Texte eingeben, indem Sie die betreffende Zifferntaste mehrfach drücken.

1.5 Parametersätze archivieren

Über folgende Hosts können die Parametersätze vom LB 480 auf einen PC archiviert werden.

- HART®-Kommunikator Modell 375/475
- Siemens Simatic PDM
- · AMS DeltaV, Emerson Process
- LB 480-PC (BERTHOLD TECHNOLOGIES spezifisches Programm für die RS485 Schnittstelle)

i wichtig

Je nach HOST-System kann es vorkommen dass bestimmte Parameter nicht korrekt abgespeichert werden. Überprüften Sie deshalb die gespeicherten Daten nach jeder Archivierung. Auch wenn Sie gespeicherte Daten zurück auf die LB 480 laden, müssen Sie die Kalibriereinstellung anschließend prüfen.

1.5.1 HART®-Kommunikator

Mit dem HART®-Kommunikator Modell 375/475 können Parametersätze archiviert werden. Hierzu muss zunächst der Parametersatz mit dem Software-Button **SAVE** aus dem Detektor auf die SD-Karte des HART®-Kommunikators geladen werden. Die gespeicherten Daten können anschließend, via SD-Karte oder über Infrarot-Schnittstelle auf einen PC archiviert werden. Hierzu sind zunächst vorbereitende Maßnahmen im Online-Menü durchzuführen. Der folgende Ablauf zeigt wie der Parametersatz vom Detektor auf einen PC, via SD-Karte übertragen werden kann.

1. Dateiname des Parametersatzes für die Archivierung in den Parameter Tag eingeben.

Befehl: **Tag** Ausführung:

Online über den HART®-Kommunikator im Menü

Identification den Parameter **Tag** aufrufen und einen Namen angeben. Maximal 8 Zeichen.

2. Aktuelle Messparameter in die Kalibrierparameter laden.

Befehl: Recall

Ausführung:

Online über den HART®-Kommunikator im Menü Cal

Parameter den Befehl Recall aufrufen.

3. Parametersatz auf HART®-Kommunikator speichern.

Parametersatz auf mak i °-kommunikator speichem

Befehl: **SAVE**

Ausführung:

Online über den HART[®]-Kommunikator im Display die Softwaretaste **SAVE** betätigen.

Info:

Der Parametersatz steht nun auch Offline, auf dem HART®-Kommunikator, zur Verfügung.

4. Parametersatz auf PC übertragen.

Dazu ist das Programm "Easy Upgrade Utility" erforderlich. Dieses muss zuvor auf dem PC installiert sein.

Ausführung:

- SD-Karte aus 475 entnehmen und in den SD-Kartenleser Ihres PCs einführen.
- Easy Upgrade Utility starten.

Die folgenden Schritte beschreiben den Ablauf im "Easy Upgrade Utility":

- ("Update PC" empfohlen)
- Verbindungstyp: Card Reader
- "Verbinden"
- "Mehr Optionen..." auswählen.
- Registerkarte "HART Konfiguration" auswählen.
- Datei im rechten Feld auswählen und auf PC Datenbank links, laden.

Der Parametersatz kann nun durch Doppelklick angezeigt, oder gedruckt werden.

Weitere Informationen zum "Easy Upgrade Utility" finden Sie in deren Online-Hilfe.

Sollen bereits archivierte Dateien auf den Detektor übertragen werden:

- 1. Mit "Easy Upgrade Utility" die Datei von PC auf SD-Karte übertragen.
- 2. SD-Karte wieder in HART®-Kommunikator einsetzen.
- Den Parametersatz im Offline-Modus des HART®-Kommunikators auswählen und mit dem Befehl **Send** auf den Detektor übertragen.

Der HART®-Kommunikator muss zur weiteren Bedienung neu gestartet werden, damit sich die Daten aktualisieren.

Zur Archivierung mit anderen Hosts siehe folgende Kapitel.

1.5.2 PDM (Siemens Simatic PDM)

Das PDM kann ebenfalls Daten im Offline-Menü abspeichern. Auch hier ist zunächst **Recall** im Menü **Cal Parameter** aufzurufen.

Beim Zurückspeichern der Daten in den Detektor ist es notwendig die Daten zweimal an den Detektor zu übertragen. Nur damit ist gewährleistet dass die Daten korrekt im Detektor aktiviert werden.

1.5.3 AMS (DeltaV Emerson Process)

Das AMS kann erst ab Version 10 Daten im Offline-Menü abspeichern. Auch hier ist zunächst **Recall** im Menü **Cal Parameter** aufzurufen.

 Einen sicheren Transfer der Daten vom Offline-Menü in den Detektor kann aber nur dadurch gewährleistet werden, in dem jeder Parameter einzeln übertragen wird. Dabei muss überprüft werden ob der jeweilige Wert tatsächlich richtig übertragen wurde. Anschließend ist zusätzlich Restore im Menü Cal Parameter aufzurufen um die Kalibrierwerte in die Messparameter zu übertragen. Band 3 2 Menüstruktur

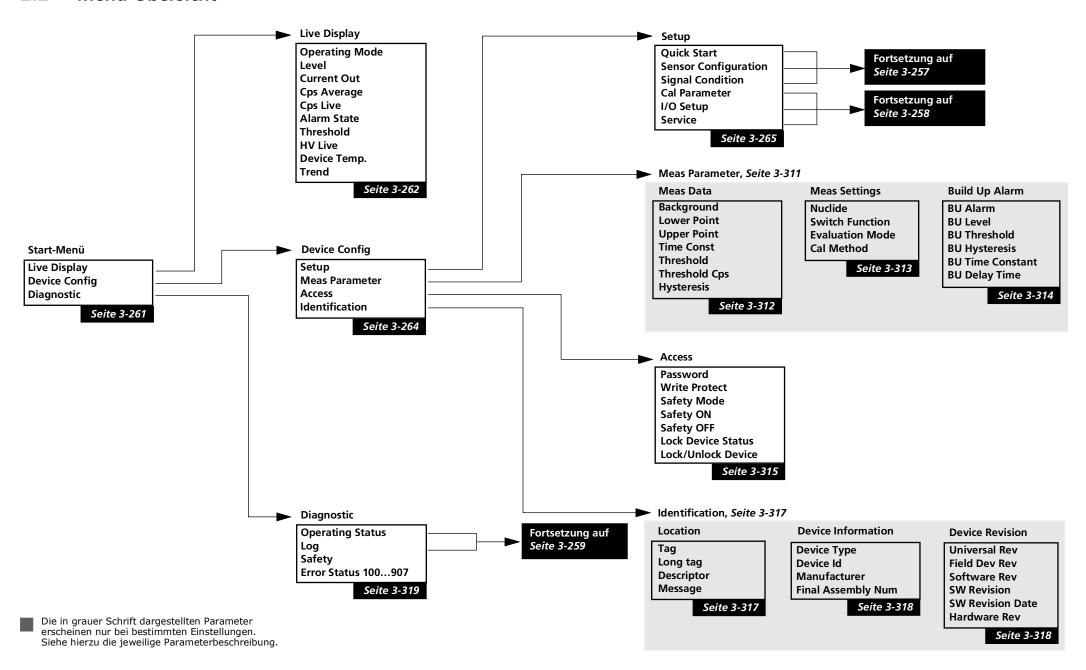
2

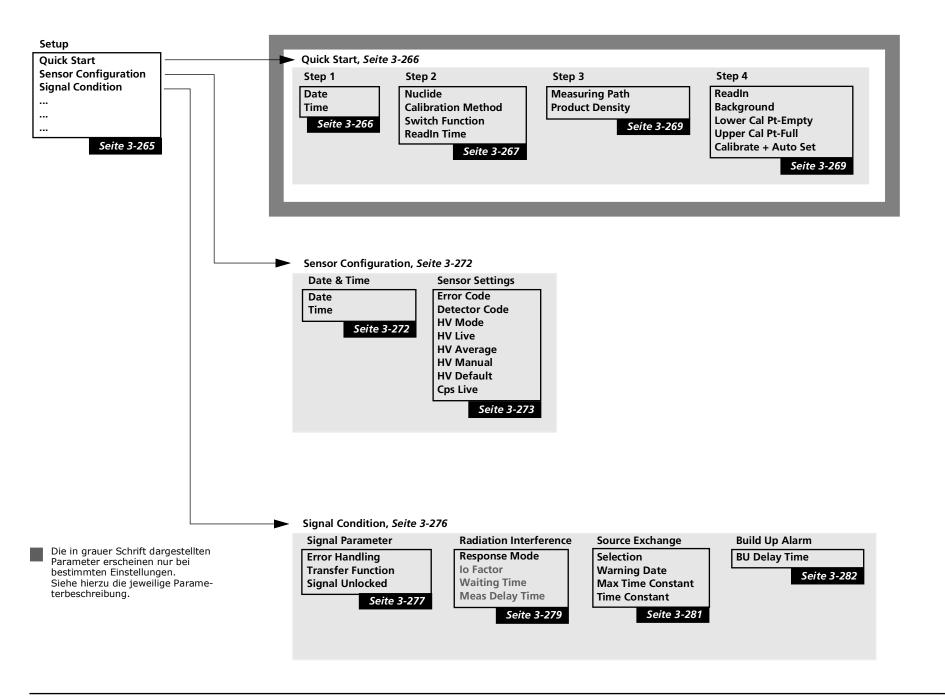
Menüstruktur

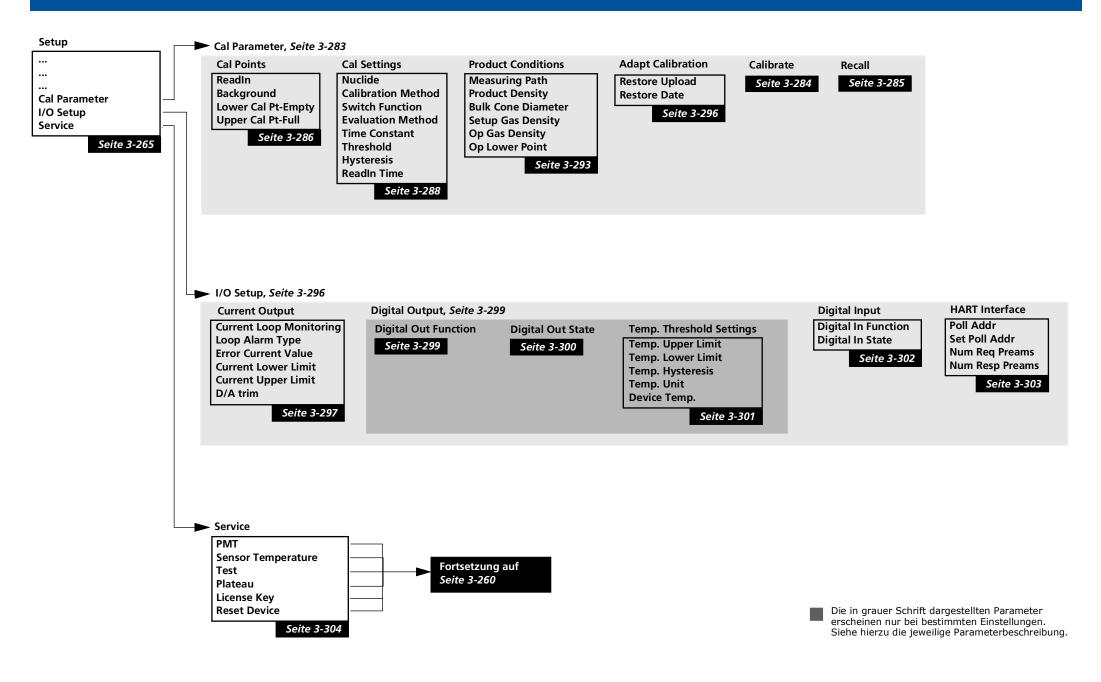
2.1 Hinweise zur Menüstruktur

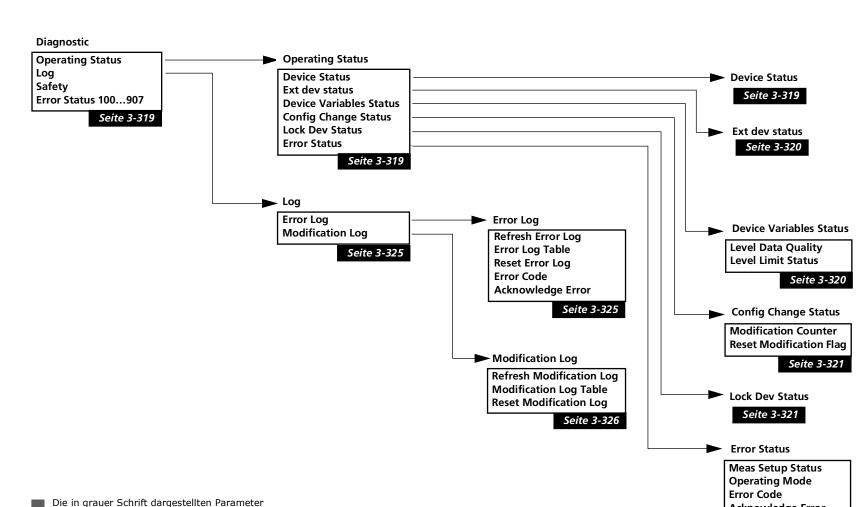
Die Menüstruktur auf den nächsten Seiten gibt Ihnen einen Überblick über alle Funktionen des SENSseries-Detektors. Schlagen Sie die Erläuterungen zur Funktion anhand der Seitennummer des jeweiligen Menüpunktes nach.

Erst ENTER dann SEND

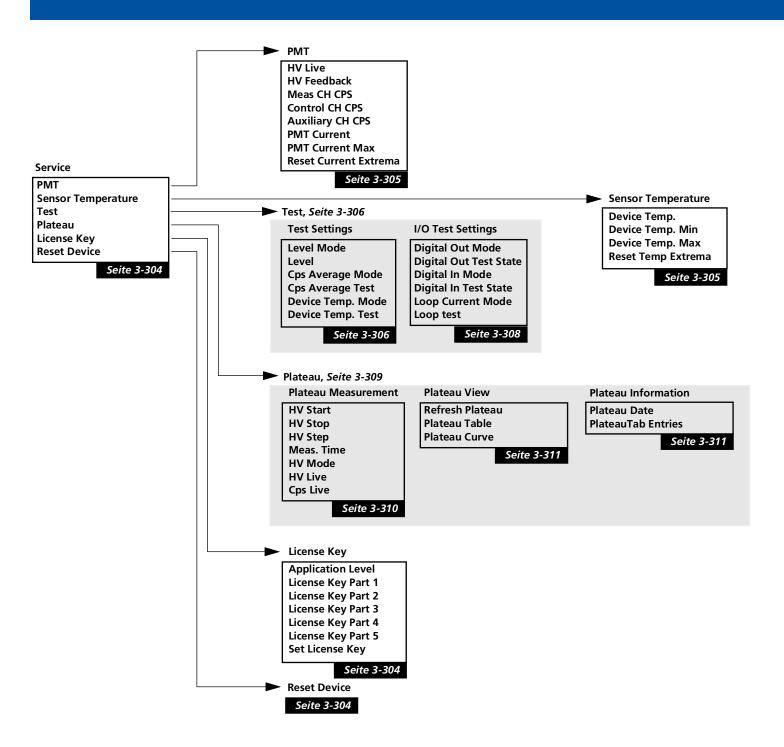

Um Fehleingaben zu vermeiden, verwenden Sie immer sofort den "Softkey" **SEND**, nachdem Sie einen Wert mit **ENTER** eingegeben haben. Der Softkey **SEND** ist nur sichtbar, wenn Werte geändert wurden.


- Mit ENTER speichern Sie geänderte Werte und Parameter im Kommunikator ab.
- Mit SEND übertragen Sie alle geänderten Werte des Kommunikators in den Detektor.


Die folgenden Kapitel setzen voraus, dass Sie:


- den Kommunikator bedienen können
- Band 2, "SENSseries installieren" dieser Bedienungsanleitung gelesen und verstanden haben.

2.2 Menü-Übersicht



erscheinen nur bei bestimmten Einstellungen. Siehe hierzu die jeweilige Parameterbeschreibung.

3 – 259 54733-20BA1S 05.2025

Acknowledge Error

Seite 3-322

Die in grauer Schrift dargestellten Parameter erscheinen nur bei bestimmten Einstellungen. Siehe hierzu die jeweilige Parameterbeschreibung.

Band 3 Menüstruktur

2.3 Start-Menü

Das Start-Menü ist die erste und oberste Ebene für die Kommunikation mit der SENSseries. Vom Start-Menü aus verzweigen sich alle weiteren Menüpunkte.

Das Start-Menü erscheint wenn Sie

- den angeschlossenen HART®-Kommunikator einschalten oder
- an einer beliebigen Stelle im Menü den "Softkey" HOME drücken

Führt zum Menü für die Anzeige der aktuellen Messwerte (**Seite 3-262**).

Führt zum Menü zur Einstellung der Detektorparameter (**Seite 3-264**).

Führt zum Menü für die Anzeige von Status- und Fehlerinformationen sowie der Protokolle für Fehler und Einstellungsänderungen (Parameteränderungen) (**Seite 3-319**).

1 Live Display

2 Device Config

3 Diagnostic

2.4 Live Display

1 Operating Mode

Anzeige des aktuellen Betriebszustands.

Folgende Zustände können auftreten:

• RUN

Die Messung befindet sich im normalen Messbetrieb.

WARNING

Es steht eine Warnmeldung der Fehlerkategorie 2 an.

Sofern der Fehler nicht mehr bei **Active Error** angezeigt wird, können Sie ihn im Fehlerprotokoll nachschauen (**Device Config** ▶ **Diagnostic** ▶ **Log**, **Seite 3-321**). Eine Liste möglicher Fehlerursachen und Maßnahmen zur Fehlerbeseitigung finden Sie in *Kapitel* 8 ab *Seite* 3-361.

ERROR

Es steht ein Fehler der Fehlerkategorie 1 an.

Sofern der Fehler nicht mehr bei **Active Error** angezeigt wird, können Sie ihn im Fehlerprotokoll nachschauen (**Device Config** ▶ **Diagnostic** ▶ **Log**, **Seite 3-321**). Eine Liste möglicher Fehlerursachen und Maßnahmen zur Fehlerbeseitigung finden Sie in *Kapitel 8* ab *Seite 3-361*.

SHUTDOWN

Es steht ein schwerwiegender Fehler der Fehlerkategorie 0 an.

Sofern der Fehler nicht mehr bei **Active Error** angezeigt wird, können Sie ihn im Fehlerprotokoll nachschauen (**Device Config** ▶ **Diagnostic** ▶ **Log**, *Seite* 3-321).

Eine Liste möglicher Fehlerursachen und Maßnahmen zur Fehlerbeseitigung finden Sie in *Kapitel 8* ab *Seite 3-361*. Verschwindet der Fehler nicht nach einem Neustart (Aus- und wieder Einschalten der Stromversorgung oder Software-Reset, *Seite 3-304*), dann muss der Detektor getauscht werden.

HOLD

Die Messung ist im Haltezustand, das heißt, der Messwert und das Stromausgangssignal sind eingefroren. Dieser Zustand kann unter folgenden Bedingungen eintreten:

- die Plateauaufnahme läuft
- Störstrahlung wurde erkannt
- der digitale Eingang steht auf Hold

TEST

Ein Testwert ist aktiviert, siehe Kapitel 2.35, Seite 3-306.

Band 3 Menüstruktur

2 Level Anzeige des aktuellen Füllstands in Prozent (primary variable).

Der Messwert zeigt Ihnen, ob

- die Kalibrierung den Messbereich ausnutzt oder überschreitet

- sich Wandanbackungen aufbauen

die Kalibrierung fehlerfrei ist

- eine eventuelle Gasdichte bei der Kalibrierung ausreichend

berücksichtigt wurde

3 Current Out Anzeige des aktuellen Ausgangsstroms am analogen Ausgang in

mA.

4 Cps Average Anzeige der über die Zeitkonstante gemittelten aktuellen Zählrate.

5 Cps Live Zeigt die aktuelle ungemitteltet Zählrate.

6 Alarm State Zeigt an, ob die Schaltschwelle (Alarmschwelle für den Füllstand)

über- bzw. unterschritten ist.

• **OFF** = kein Alarm

• **ON** = Alarm

7 Threshold Nach einer Kalibrierung wird hier der automatisch ermittelte bzw.

der manuell gesetzte Schaltpunkt der Schaltschwelle (Alarmschwelle) angezeigt. Der Wert wird in % angezeigt und bezieht sich auf den Bereich, der durch die Zählraten für Leer und Voll bestimmt

ist. Leer entspricht 0%, Voll entspricht 100%.

8 HV Live Anzeige der aktuellen HV (Hochspannung) am Photomultiplier. Falls

der **HV Mode** auf **AUTO** gesetzt ist (Normalbetrieb), muss sich der

Wert in **HV Live**, über mehrere Sekunden betrachtet, ändern.

9 Device Temp. Zeigt die Temperatur im Inneren des Detektors an.

10 Trend Zeigt den Trend von wichtigen Messwerten wie Füllstand, Zählrate

und HV an.

2.5 Device Config

1 Setup Führt zum Setup-Menü. Erscheint hier **Setup !locked!**, dann muss

 $\ \, \text{der Zugriff "uber } \textbf{Access} \text{ freigeschaltet werden } (\textbf{\textit{Seite 3-265}}).$

2 Meas ParameterFührt zum Menü zur Anzeige der aktuell gültigen Messparameter mit denen der Messwert ermittelt wird. Jede Kalibrierung mit **Cali-**

brate überschreibt diese Werte erneut. Diese Anzeigewerte dienen dem Anwender zur Überprüfung, seiner Kalibrierung (**Seite 3**-

311).

3 Access Führt zum Menü für die Passworteingabe, den Möglichkeiten der

Sperrung gegen Konfigurationsänderungen und zur Aktivierung des

Safety-Modus (**Seite 3-315**).

4 Identification Führt zum Menü zur Anzeige verschiedener Detektorparameter,

z.B. Modell, Device-ID, Software- und Hardware-Revision (Seite 3-

317).

3 **- 264** 54733-20BA1S 05.2025

Band 3 Menüstruktur

2.6 Setup

Menüpfad: **Device Config** ▶ **Setup**.

Diese Menüs ermöglichen Ihnen, Änderungen an den Einstellungen und der Kalibrierung des Detektors vorzunehmen. Bei der Auslieferung ist der Zugriff auf alle Menüpunkte ohne Passwort möglich. Falls ein Passwort eingegeben und aktiviert wurde, müssen Sie dieses erneut eingeben, um den Zugriff freizugeben (siehe Kapitel 2.45, **Seite 3-315**).

Verwenden Sie **Recall** (**Device Config** ▶ **Setup** ▶ **Cal Parameter** ▶ **Recall**, *Seite 3-283*), falls Sie nur einige Einstellungen ändern möchten. Dadurch werden die aktuellen Einstellungen in die Menüs für das Setup kopiert und Sie können Änderungen einzelner Einstellungen vornehmen.

Aktivieren Sie Änderungen mit Calibrate (Device Config ▶ Setup ▶ Cal Parameter ▶ Calibrate), siehe Kapitel 2.20, Seite 3-283.

1 Quick StartFührt zu einem Menü, mit dessen Hilfe eine schnelle, benutzergeführte Erstkonfiguration des Detektors möglich ist (**Seite 3-266**).

2 Sensor Configuration Führt zum Menü für die Sensoreinstellungen (**Seite 3-272**).

3 Signal Condition Führt zum Menü für die Signalverarbeitungseinstellungen (*Seite 3-*

276).

4 Cal Parameter Führt zum Menü für die Kalibrierung (Seite 3-283).

5 I/O Setup Führt zum Menü für die I/O-Funktionen (*Seite 3-296*).

6 Service Führt zum Menü für Test- und Servicefunktionen sowie für die Plateaumessung und Anzeige der Plateauwerte (**Seite 3-304**).

Quick Start

Menüpfad: **Device Config** ▶ **Setup** ▶ **Quick Start**.

Quick Start ermöglicht Ihnen, den Detektor rasch in Betrieb zu nehmen, ohne dass Sie sich mit dem kompletten Menü beschäftigen müssen. Falls Sie zusätzlich spezielle Funktion aus dem Gesamtmenü benötigen, können Sie diese jederzeit dort aktivieren. Bitte beachten Sie, dass die Funktion Calibrate + Auto Set im Menü Quick-Start neben der Kalibrierung auch bestimmte andere Parameter automatisch setzt.

WICHTIG

Änderungen im Menü **Quick Start** müssen abschließend mit Calibrate + Preset (in Step 3) aktiviert werden.

2.8 **Quick Start, Step 1**

Geben Sie hier das aktuelle Datum und die Uhrzeit ein.

Das korrekte Datum wird für die automatische Zerfallskompensation des Isotops benötigt. Da die Aktivität des Strahlers mit der Zeit nachlässt, werden die Kalibrierzählraten automatisch über das Datum kompensiert. Die Zerfallskompensation erfolgt täglich um 09:01h.

Aktuelles Datum. Das Datum wird in folgendem Format angegeben:

MM/TT/JJJJ

Wenn der Detektor erkennt, dass das Datum abweicht, signalisiert er einen Datums-Fehler. Wenn Error Handling auf NORMAL gesetzt ist, dann arbeitet der Detektor mit dem gespeicherten Datum weiter. Andernfalls (Einstellung **SENSITIVE**) geht auch der Stromausgang auf Fehlerstrom.

Aktuelle Uhrzeit. Die Zeit wird in folgendem Format angegeben:

hh:mm:ss

Zeitunterschiede haben praktisch keine Auswirkung auf die Korrektur der Aktivitätsabnahme. Die richtige Uhrzeit ist aber zur Überprüfung der Detektorfunktion hilfreich: Im Fehlerfall können Sie im Fehlerprotokoll (Device Config ▶ Diagnostic ▶ Log, Seite 3-321) anhand von Datum und Uhrzeit feststellen, wann genau der Fehler aufgetreten ist.

1 Date

2 Time

2.9 Quick Start, Step 2

1 Nuclide

2 Calibration Method

- Geben Sie hier das Isotop (Nuklid) an, das in Ihrem Strahler verwendet wird:
- Co-60
- Cs-137
- **USER DEFINED**

Die Angabe steuert die automatische Zerfallskompensation. Die richtige Eingabe ist auch bei einer Einpunktkalibrierung und bei der Gasdichtekompensation wichtig. Das verwendete Isotop können sie am Typenschild der Abschirmung ablesen und aus Ihren Lieferunterlagen ersehen. Die Eingabe **USER DEFINED** ermöglicht es Ihnen, ein beliebiges Isotop zu verwenden. In diesem Fall werden weitere Parameter abgefragt: geben Sie die Halbwertszeit unter Half Life Time und den Absorbtionskoeffizienten unter Absorption an.

Was passiert, wenn Sie das falsche Isotop ausgewählt haben?

Durch die falsche Zerfallskompensation kommt es erst nach einigen Wochen oder Monaten zu Fehlmessungen. Sofern Sie auch Werte für die Produkt- oder Gasdichte eingeben, werden dann auch falsche Schaltschwellen (Alarmschwellen für den Füllstand) berechnet. Bei einer Einpunktkalibrierung wird bei einer falschen Isotopenanwahl auch der Kalibrierpunkt für 100% falsch berechnet.

Sie können zwischen folgenden Kalibriermethoden auswählen:

1-POINT

Verwenden Sie die 1-Punkt-Kalibrierung nur, wenn ein Vollabgleich nicht möglich ist.

Bei dieser Methode ist ein Leerabgleich (Füllstand unterhalb der Überwachungshöhe) erforderlich. Anhand weiterer Eingaben wie Produktdichte und Messweg wird die Zählrate für den Vollabgleich (Füllstand oberhalb der Überwachungshöhe) dann automatisch ermittelt (berechnet).

2-POINT

Bei der Zweipunkt-Kalibrierung sind ein Leerabgleich (Füllstand unterhalb der Überwachungshöhe) und ein Vollabgleich (Füllstand oberhalb der Überwachungshöhe) erforderlich. Führen Sie Leer- und Vollabgleich in **Step 4** durch (**Seite 3-269**).

Da der Vollabgleich tatsächlich gemessen und nicht nur errechnet wird, erreicht diese Einstellung eine bessere Anzeigegenauigkeit.

3 Switch Function

▶ Legen Sie hier fest, ob der Grenzschalter als High Alarm oder als Low Alarm verwendet wird. Die Schaltrichtung beeinflusst die Safe Fail-Funktion des digitalen Ausgangs (Open Collector). Um den Alarm auch als Signal über den Open Collector auszugeben, müssen Sie im Menü I/O Setup (Seite 3-296) Digital Out Function auf LS ALARM setzen.

Sie haben folgende Einstellmöglichkeiten:

MAX

Der Alarm wird bei Überschreitung der Schaltschwelle ausgelöst (High Alarm).

MIN

Der Alarm wird bei Unterschreitung der Schaltschwelle ausgelöst (Low Alarm).

MAX + BUILD UP

Der Alarm wird bei Überschreitung der Schaltschwelle ausgelöst (High Alarm). Zusätzlich erfolgt eine Überwachung, die einen Alarm bei Wandanbackungen¹ (Build-up) ausgibt. Voraussetzung für eine korrekte Funktion ist, dass sowohl die Zählrate für Leer als auch die Zählrate für Voll gemessen wurde. Bei der Messung des Leerwertes muss sicher gestellt sein, dass keine Wandanbackungen vorhanden sind.

 Sie können hier festlegen, über welche Zeitdauer die Zählrate eingelesen wird.

Über diese Zeitdauer wird die statistische Schwankung der Zählrate gemittelt. Je länger sie ist, desto besser ist der Mittelwert. Eine Zeitdauer von 60s (Werkseinstellung) ist in der Regel ausreichend.

54733-20BA1S 3 – 268 05.2025

⁴ ReadIn Time

Die Funktion ermöglicht die frühzeitige Erkennung von Wandanbackungen, d.h., noch bevor die sichere Schaltfunktion nicht mehr gewährleistet ist. Die Funktion **BUILD UP** erhöht allerdings automatisch die Zeitkonstante und damit auch die Reaktionszeit.

2.10 Quick Start, Step 3

Geben Sie in diesem Schritt die Produktparameter ein, falls Sie in Schritt 2 (**Step 2**) die Einstellung **1-POINT** als **Calibration Method** ausgewählt haben. Fahren Sie andernfalls mit Schritt 4 fort.

- ► Geben Sie den Messweg des Strahlenganges im Produkt, das gemessen werden soll, in mm ein. Im Regelfall entspricht dies dem Innendurchmesser des Behälters.
- ▶ Geben Sie bei Flüssigkeiten die Flüssigkeitsdichte, bei Schüttgütern die Schüttdichte des Produktes, das gemessen werden soll, in kg/m³ ein. Falls die Flüssigkeitsdichte bzw. die SchüttdichteSchüttdichte nur ungefähr bekannt ist, geben Sie den niedrigsten anzunehmenden Wert ein.

2.11 Quick Start, Step 4

In diesem Schritt werden die Kalibrierdaten ermittelt und der Detektor kalibriert. Danach werden die ermittelten Daten in das Menü **Meas Parameter** übertragen und aktiviert.

Hiermit starten Sie das Einlesen der Zählraten. Während die Zählrate eingelesen wird, wird laufend der Mittelwert gebildet und angezeigt. Die Dauer des Einlesens legen Sie unter **ReadIn Time** (*Quick Start*, **Step 2**) fest.

Wählen Sie zunächst aus, welchen Kalibrierpunkt Sie einlesen möchten:

BACKGROUND

Die Hintergrundstrahlung (Background) muss gemessen werden, damit der Detektor den Zerfall der Strahlungsquelle korrekt kompensieren kann. Stellen Sie vor der Messung sicher, dass Sie keine Strahlung von der Strahlenquelle mitmessen. Am einfachsten ist dies, wenn die Strahlenquelle noch nicht montiert ist. Schließen Sie andernfalls den Strahlengang und füllen Sie nach Möglichkeit zusätzlich den Behälter.

LOWER-PT

Für diese Messung muss der Füllstand im Behälter unterhalb der Überwachungshöhe sein oder der Behälter muss ganz leer sein. Während sie einlesen, darf der Füllstand nicht über die Schaltschwelle ansteigen und die Bedingungen im Behälter müssen soweit wie möglich den Bedingungen im Betrieb entsprechen. Sofern dies für Ihre Applikation zutrifft und den Strahlengang beeinflusst, betrifft dies z.B.:

- Gasdichte
- Rührer
- Kühl-/Heizmantel

1 Measuring Path

2 Product Density

1 ReadIn

UPPER-PT

Diese Messung kann nur bei einer 2-Punkt-Kalibrierung durchgeführt werden (**Step 2** ▶ **Calibration Method**: **2-POINT**). Für die Messung muss der Füllstand im Behälter oberhalb der Überwachungshöhe sein oder der Behälter muss ganz voll sein. Während sie einlesen, darf der Füllstand nicht unter die Schaltschwelle fallen und die Bedingungen im Behälter müssen soweit wie möglich den Bedingungen im Betrieb entsprechen. Sofern dies für Ihre Applikation zutrifft und den Strahlengang beeinflusst, betrifft dies z.B.:

- Gasdichte
- Rührer
- Kühl-/Heizmantel

Beim Einlesen der Zählrate wird die verbleibende Zeit bis zum Ende des Vorgangs angezeigt. Zum Schluss werden Sie aufgefordert, die ermittelte Zählrate mit ${\it OK}$ zu bestätigen. Um den Einlesevorgang abzukürzen, können Sie jederzeit mit ${\it OK}$ stoppen.

Der Background ist die Hintergrundstrahlung (Nulleffekt), die in der Umgebung vorhanden ist. Die Hintergrundstrahlung muss gemessen werden, damit der Detektor den Zerfall der Strahlungsquelle korrekt kompensieren kann.

▶ Wählen Sie *ReadIn* zum Einlesen der Zählrate für die Hintergrundstrahlung. Falls Sie den Wert bereits kennen, können Sie ihn hier auch eingeben.

Zählrate bei leerem Behälter bzw. bei einem Füllstand unterhalb der Schaltschwelle.

Wählen Sie **ReadIn** zum Einlesen der Zählrate. Falls Sie den Wert bereits kennen, können Sie ihn hier auch eingeben.

Zählrate bei vollem Behälter bzw. bei einem Füllstand oberhalb der Schaltschwelle.

Falls Sie bei **Step 2** ▶ **Calibration Method**, **Seite 3-267**, die Einstellung **1-POINT** gewählt haben, wird der Wert für **Upper Cal Pt-Full** automatisch aus dem Wert von **Lower Cal Pt-Empty** und den im Menü **Product Conditions** (**Seite 3-293**) angegebenen Parametern berechnet.

Wählen Sie ReadIn zum Einlesen der Zählrate, falls Sie bei Calibration Method die Einstellung 2-POINT gewählt haben. Falls Sie den Wert bereits kennen, können Sie ihn hier auch eingeben.

Mit diesem Menüpunkt aktivieren Sie die bei den Messungen ermittelten Kalibrierdaten. Dabei werden die Kalibrierdaten in den Parametersatz **Meas Parameter** übertragen. Somit erhält der Detektor eine neue Kalibrierung, mit der zukünftig die Messwerte ermittelt werden. Dabei werden auch automatisch die optimale Schaltschwelle und die Zeitkonstante berechnet.

2 Background

3 Lower Cal Pt-Empty

4 Upper Cal Pt-Full

6 Calibrate + Auto Set

Band 3 Menüstruktur

Nach der Kalibrierung zeigt eine Statusmeldung, ob die Kalibrierdatenaktivierung erfolgreich durchgeführt werden konnte. Falls nicht, bleiben die Messparameter unverändert. Mögliche Statusmeldungen sind:

- **0-0**K

Die durchgeführte Kalibrierung ist in Ordnung.

- 1-ERROR BACKGROUND

Die Zählrate für die Hintergrundstrahlung (Nulleffekt, Background) ist höher als die für die Kalibrierpunkte für Leer oder Voll (Lower Cal Pt-Empty oder Upper Cal Pt-Full).

- 2-ERROR CALIBRATION POINT

Die Leerzählrate ist niedriger als die Vollzählrate (Lower Cal Pt-Empty < Upper Cal Pt-Full).

- 3-ERROR THRESHOLD / TIME CONSTANT

Die Schaltschwelle (**Threshold**) liegt zu nahe an einem der Kalibrierpunkte für Leer (**Lower Cal Pt-Empty**) oder Voll (**Upper Cal Pt-Full**) oder bei der manuellen Kalibrierung wurde die Zeitkonstante zu klein gewählt. Der Fehler tritt auch auf, wenn die Zeitkonstante 999s überschreitet.

- 4-ERROR THRESHOLD OUT OF RANGE

Die Schaltschwelle (**Threshold**) plus oder minus der Hysterese überschreitet den zulässigen Bereich von 0% ... 100%.

5-ERROR BU TC

Die Zeitkonstante für den Build-up-Alarm liegt über 14.400 Sekunden. Dies liegt entweder daran, dass der Unterschied zwischen Leerzählrate und Vollzählrate zu gering ist (Lower Cal Pt-Empty \approx Upper Cal Pt-Full) oder dass der Grenzwert zu nahe an einem der Kalibrierpunkte für Leer (Lower Cal Pt-Empty) oder Voll (Upper Cal Pt-Full) liegt.

- 6-DATE ERROR

Ein Datum steht noch auf dem Standardwert 1.1.2000. Bei **Calibrate** den Parameter **Date** überprüfen. Bei **Restore** das Datum in **Restore Date** überprüfen.

- 7-CHECK ERROR

Der Status der Kalibrierparameter konnte nicht vollständig überprüft werden. Wiederholen Sie in diesem Fall die Kalibrierung. Tritt der Fehler erneut auf, so ist der Detektor, zumindest aber dessen Elektronik zu tauschen.

HINWEIS

Die oben beschriebene Plausibilitätsprüfung kann nicht verhindern dass vom Anwender falsche Daten eingelesen werden. Im Zweifelsfall empfehlen wir einen Servicetechniker von BERTHOLD TECHNOLOGIES hinzuziehen.

Bei **Calibrate + Auto Set** werden folgende Einstellungen automatisch vorgenommen:

- Evaluation Mode = AUTO SET
- OP Gas Density = 0
- Setup Gas Density = 0
- Bulk Cone = 0

2.12 Sensor Configuration

Menüpfad: **Device Config ▶ Setup ▶ Sensor Configuration**.

Die Sensor Settings sind bereits vom Werk voreingestellt.

Führt zum Menü für Datum und Uhrzeit (Seite 3-272).

Führt zum Menü für Detektor-Code und HV-Einstellungen (**Seite 3-273**).

2.13 Date & Time

Menüpfad: **Device Config** ▶ **Setup** ▶ **Sensor Configuration** ▶ **Date** & **Time**.

Das korrekte Datum wird für die automatische Zerfallskompensation des Isotops benötigt. Da die Aktivität des Strahlers mit der Zeit nachlässt, werden die Kalibrierzählraten im Menü **Meas Data** automatisch über das Datum kompensiert. Die Zerfallskompensation erfolgt täglich um 09:01 h. Ein Kondensator sorgt dafür, dass Datum und Uhrzeit auch bei ausgeschaltetem Detektor für ca. einen Monat weiterlaufen, auch wenn die Netzversorgung abgeschaltet ist. War der Detektor längere Zeit (mehrere Wochen) ohne Netzversorgung, dann kann der Kondensator entleert sein. Wird in diesem Fall die Netzversorgung wieder zugeschaltet, dann startet die Uhr mit dem letzten abgespeicherten Datum und eine Fehlermeldung "Real time clock not valid" zeigt an, dass das Datum aktualisiert werden muss.

Aktuelles Datum. Das Datum wird in folgendem Format angegeben:

MM/TT/JJJJ

Wenn der Detektor erkennt, dass das Datum abweicht, signalisiert er einen Datums-Fehler. Die Reaktion des Signalausgangs ist von der Einstellung bei **Error Handling** (**Signal Parameter**, **Seite 3-277**) abhängig:

NORMAL

Die Messung arbeitet mit dem zuletzt gespeicherten Datum weiter.

SENSITIVE

Die Messung geht in den sicheren Zustand und der Stromausgang geht auf Fehlerstrom.

1 Date & Time

2 Sensor Settings

1 Date

Band 3 Menüstruktur

2 Time

Aktuelle Uhrzeit. Die Zeit wird in folgendem Format angegeben:

hh:mm:ss

Zeitunterschiede haben praktisch keine Auswirkung auf die Korrektur der Aktivitätsabnahme. Die richtige Uhrzeit ist aber zur Überprüfung der Detektorfunktion hilfreich: Im Fehlerfall können Sie im Fehlerprotokoll (**Device Config ▶ Diagnostic ▶ Log**, *Seite 3-321*) anhand von Datum und Uhrzeit feststellen, wann genau der Fehler aufgetreten ist.

2.14 Sensor Settings

Menüpfad: **Device Config** ▶ **Setup** ▶ **Sensor Configuration** ▶ **Sensor Settings**.

Die **Sensor Settings** sind bereits vom Werk voreingestellt.

1 Error Code

Zeigt an ob eine Fehlermeldung ansteht.

Steht kein Fehler an, dann wird hier "0" angezeigt.

Eine Fehlermeldung wird mit einer dreistelligen Nummer angezeigt. Die Fehlerursache und die Fehlerbehebung entnehmen sie *Kapitel 8, "Fehlerbehandlung"*.

2 Detector Code

Der Detektorcode ist entscheidend für die richtige Funktion der automatischen HV-Kontrolle (Hochspannungsregelung). Der aktuell eingestellte Detektorcode wird angezeigt.

Der Detektorcode wurde bereits von BERTHOLD TECHNOLOGIES eingestellt. Er ist von der Szintillatorgröße und dem Detektortyp abhängig, siehe *Band 2, Kapitel 1.6, "Detektorcodes"*, auf *Seite 2-175*

3 HV Mode

Der HV-Mode (Hochspannungsregelung) bietet folgende Einstellungsmöglichkeiten:

• AUTO

Automatische HV-Regelung. Wählen Sie diese Betriebsart im normalen Messmodus. Sie ermöglicht ein temperaturstabiles Arbeiten des Detektors.

MANUAL

Manuelle HV-Regelung. Diese Einstellung dient zu Testzwecken, Sie können hier aber auch behelfsmäßig den Arbeitspunkt des Detektors festlegen. Die angegebene Spannung muss allerdings im Plateau liegen.

Wenn Sie **MANUAL** aktivieren, wird die automatische HV-Regelung abgeschaltet. Die HV wird dann auf den Wert gesetzt, der im Menüpunkt **HV Manual** (6) gesetzt wurde.

PLATEAU

Startet die Plateaumessung. Wenn Sie **PLATEAU** anwählen, wird der Messmodus verlassen und das Plateau des Multipliers gemessen, der im Detektor eingesetzt ist. Das Plateau wird anhand der Einstellungen im Menü **Device Config ▶ Setup ▶ Service ▶ Plateau** gemessen.

Am Ende der Plateau-Messung schaltet der Detektor selbstständig wieder auf **HV Mode**: **AUTO** bzw. **MANUAL** zurück, je nachdem, welcher Modus zuletzt eingestellt war.

Anzeige der aktuellen HV (Hochspannung) am Photomultiplier. Falls der **HV Mode** auf **AUTO** gesetzt ist (Normalbetrieb), muss sich der Wert in **HV Live**, über mehrere Sekunden betrachtet, ändern.

Zeigt die mittlere HV (Hochspannung) der letzten 10 Tage.

Deutliche Abweichungen von **HV Live** zu **HV Average** werden als Fehler gewertet und gemeldet.

Wenn Sie **HV Default** verändern, übernimmt **HV Average** automatisch den Wert von **HV Default**.

Sie können hier einen HV-Festwert eingeben. Der Wert wird aktiv, wenn Sie bei **HV-Mode** den Wert **MANUAL** wählen.

4 HV Live

5 HV Average

6 HV Manual

Band 3 Menüstruktur

7 HV Default

HV Default bewirkt:

Eine schnelle Arbeitspunkteinregelung nach Spannungsausfall Nach einem Spannungsausfall startet die HV beim letzten Wert von HV Average, der sich aus der HV Default ergibt. Dadurch verringert sich die Zeit für die Einlaufphase nach einem Spannungsausfall erheblich.

Die Fehlererkennung bei einer HV-Drift

Wenn die HV zu weit (+40%, -20%) von der HV Default abweicht oder wenn die HV an die Bereichsgrenzen von 300V bzw. 1300V stößt, wird dies als Fehler gemeldet.

Sonderfunktion: 0V

Für Servicezwecke kann die HV Default auch auf 0V gesetzt werden. In diesem Fall sind die oben beschriebenen Mechanismen außer Kraft, nach einem Spannungsausfall fängt die Messung bei 800V zu regeln an.

HV Default wurde bereits von BERTHOLD TECHNOLOGIES ermittelt und gesetzt. Weicht dieser Wert bei der ersten Inbetriebnahme um mehr als 5% von HV Live ab, dann müssen Sie HV Default neu abgleichen:

- ▶ Setzen Sie HV Default auf 0.
- Lesen Sie 30 Minuten später den Wert in **HV Live** ab.
- ▶ Geben Sie den abgelesenen Wert in **HV-Default** ein.

Beachten Sie beim CrystalSENS, dass die Zählrate bei diesem Vorgang über 300 Ips liegt, damit sich die HV einregeln kann.

Der Arbeitspunkt liegt bei neuen Detektoren im Regelfall zwischen 400 und 900 V. Sollte sich bei Ihnen ein anderer Wert ergeben, dann halten Sie bitte Rücksprache mit BERTHOLD TECHNOLOGIES oder der für Sie zuständigen Vertretung.

8 Cps Live

Zeigt die aktuelle ungemittelte Zählrate.

2.15 Signal Condition

Menüpfad: **Device Config ▶ Setup ▶ Signal Condition**.

Dieses Menü fasst einige spezielle Funktionen zusammen, die direkten Einfluss auf die Signale der Messung haben:

- Art und Weise der Signalisierung

- allgemeine Warn- und Fehlermeldungen

 spezielle Warnsignale für die Früherkennung von Funktionseinschränkungen

Ein wichtiger Punkt sind die Einstellungen im Menüpunkt **Error Handling** im Menü **Signal Parameter**.

1 Signal Parameter Führt zum Menü für die Fehlerbehandlung und Einstellungen für den Signalausgang (**Seite 3-277**).

2 Radiation Interference Führt zum Menü für die Fremdstrahlungseinstellungen (**Seite 3-**

279).

3 Source Exchange Führt zum Menü für Einstellungen zu Zeitkonstante und Strahler-

tausch (Seite 3-281).

4 Build Up Alarm Führt zur Einstellung des Voralarms bei Wandanbackungen

(Seite 3-282).

1 Error Handling

Signal Parameter

Menüpfad: **Device Config** ▶ **Setup** ▶ **Signal Condition** ▶ **Signal** Parameter.

Sie können hier eine unterschiedliche Gewichtung der Fehler und der Fehlerbehandlung einstellen:

SENSITIVE

Alle Fehler führen dazu, dass der Stromausgang Fehlerstrom meldet. Um auch Warnmeldungen zu erhalten, müssen Sie Meldungen zusätzlich über das HART®-Signal oder den digitalen Ausgang auswerten.

Die Einstellung **SENSITIVE** wird automatisch aktiviert, wenn der Safety Mode ausgewählt wurde.

NORMAL

Nur schwere Fehler werden als Fehlerstrom gemeldet. Damit fällt der Messwert über das Stromsignal erst dann aus, wenn die Messung nicht mehr verwendet werden kann.

Um auch leichte Fehler und Warnmeldungen zu erhalten, müssen Sie Meldungen zusätzlich über das HART®-Signal oder den digitalen Ausgang auswerten.

i WICHTIG

Die Einstellung NORMAL dürfen Sie nur wählen, wenn eine Gefährdung von Mensch und Umwelt sowie ein Sachschaden bei einem fehlerhaften Messwert ausgeschlossen ist.

Um den digitalen Ausgang für die oben angeführten Meldungen verwenden zu können, müssen Sie im Menüpunkt **Digital Out** Function die Einstellung WARNING + ERROR verwenden (Device Config ▶ Setup ▶ I/O Setup ▶ Digital Output ▶ Digital Out Function, Seite 3-299).

Die Fehlerbehandlung wird im Detail in Kapitel 8 ab Seite 3-361 beschrieben.

2 Transfer Function

Legen Sie hier fest, wie sich der Stromausgang bei einer Füllstandsänderung verhalten soll:

LINEAR

Es wird ein kontinuierliches 4–20 mA-Signal ausgegeben, das proportional zur Zählrate ist.

• DISCRETE SWITCH

Abhängig von der eingestellten Schaltschwelle (Alarmschwelle für den Füllstand) wird ein Strom von 4mA oder von 20mA ausgegeben. Werte zwischen 4 und 20mA werden nicht ausgegeben.

Hiermit können Sie sich alarmieren lassen wenn das Gerät mit dem Passwort entriegelt wird. Es wird die Warnmeldung 901 ausgegeben. Wählen Sie **WARNING** nur dann, wenn das Leitsystem alarmiert werden soll, sobald das Gerät mit dem Passwort entriegelt wurde.

OFF

Die Funktion ist abgeschaltet.

WARNING

Sobald der Detektor mit dem Passwort entriegelt wird, wird eine Warnmeldung ausgegeben. Ist **Error Handling** auf **SENSITIVE** gesetzt, dann wird zusätzlich zum Alarm auch ein Fehlerstrom ausgegeben.

Die Reaktion ist anhand der Liste in *Kapitel 8.2* auf *Seite 3-362* erkennbar.

3 Signal Unlocked

2.17 Radiation Interference

Menüpfad: **Device Config** ▶ **Setup** ▶ **Signal Condition** ▶ **Radiation Interference**.

Verwenden Sie dieses Menü, um z.B. die Fremdstrahlung von Schweißnahtprüfungen oder der kurzzeitigen Handhabung anderer Strahler in der Nähe des Detektors zu erkennen.

Übersteigt die aktuelle Zählrate die Schwelle, die in **Io Factor** festgelegt ist, wird die Warnmeldung *Störstrahlung* ausgegeben. In diesem Fall wird:

- der Messwert eingefroren und
- der Stromausgang hält den letzten Messwert

Die Messung bleibt so lange eingefroren, wie die Fremdstrahlung anliegt, plus der Wartezeit, die in **Waiting Time** festgelegt wurde.

Um die Warnmeldungen zu erhalten, müssen Sie Meldungen über das ${\sf HART}^{\it ®}\text{-Signal}$ oder den digitalen Ausgang auswerten.

i WICHTIG

Wenn die Fremdstrahlungserkennung aktiviert ist, werden die Messwerte mit einer Verzögerung ausgegeben. Die Verzögerung ist variabel von 0 ... 5 Sekunden einstellbar.

Die Verzögerung ist erforderlich, damit im Moment der Erkennung der Messwert unbeeinflusst bleibt, obwohl in diesem Fall ja bereits erhöhte Zählraten vorliegen. Aus diesem Grunde sind bei aktiver Fremdstrahlungserkennung Anwendungen ausgeschlossen, bei denen die Reaktionszeit unter der eingestellten Verzögerung liegen muss.

Ausführliche Informationen zum Thema Fremdstrahlungserkennung finden Sie in *Kapitel 7.4*, *Seite 3-354*.

Wählen Sie hier den Erkennungsmodus aus:

DISABLED

Die Fremdstrahlungserkennung ist deaktiviert.

• RAD. INTERFERENCE

Die Fremdstrahlungserkennung ist aktiv.

1 Response Mode

2 lo Factor

Definiert die Schwelle, bei der die Störstrahlungserkennung anspricht. Beim Standardwert 1,5 liegt die Schwelle beim 1,5-fachen der aktiven Leerzählrate und ist für die meisten Anwendungen passend.

Sie können den Faktor für die Schwelle selbst anpassen. Beachten Sie, dass ein Wert unter 1,5 Fehlschaltungen durch Messwertschwankungen auslösen kann. Ein Vergrößern des Faktors verringert die Ansprechempfindlichkeit. Erhöhen Sie den Faktor wenn durch starke Messwertschwankungen, z.B. durch Rührerblätter, Fehlalarme ausgelöst werden.

3 Waiting Time

Wird Fremdstrahlung erkannt, wird der Messwert eingefroren und frühestens nach Ablauf der Wartezeit wieder freigegeben. Der Wert für die Wartezeit muss in Sekunden eingegeben werden.

4 Meas Delay Time

Wenn die Fremdstrahlungserkennung aktiviert ist, werden die Messwerte mit einer Verzögerung ausgegeben. Die Verzögerung ist variabel von 0 bis 5 Sekunden einstellbar. Die Verzögerung ist erforderlich, damit im Moment der Erkennung der Messwert unbeeinflusst bleibt, da in diesem Fall bereits erhöhte Zählraten vorliegen die den Messwert verfälschen können.

54733-20BA1S 3 - 280 05.2025 Band 3 Menüstruktur

Source Exchange

Menüpfad: **Device Config** ▶ **Setup** ▶ **Signal Condition** ▶ **Source** Exchange.

Oft ist es für den Anwender nicht ersichtlich, wann ein Strahler getauscht werden muss. Aktivieren Sie die Meldung Strahlertausch, wenn Sie rechtzeitig gewarnt werden wollen, dass der Strahler getauscht werden soll. Gründe für einen Strahlertausch können die Sicherstellung der Messfunktion sein oder eine aus Strahlenschutzgründen maximale Gebrauchsdauer des Strahlers.

Um die Warnmeldung zu erhalten, müssen Sie Meldungen über das HART®-Signal oder den digitalen Ausgang auswerten.

WICHTIG

Die vom Hersteller empfohlene Strahlerlebensdauer liegt in der Regel bei ca. 10 Jahren. Eine längere Einsatzdauer des Strahlers ist mit dem zuständigen Strahlenschutzbeauftragten abzuklären, der die örtlichen Strahlenschutzbedingungen kennt.

Die vom Strahlenschutzbeauftragten genehmigte Gebrauchsdauer begrenzt die maximale Einsatzdauer, auch wenn unter Warning Date eine längere technische Gebrauchsdauer angezeigt wird. Wählen Sie in diesem Fall **DATE** bei **Selection** an und geben Sie das vom Strahlenschutzbeauftragten genannte Strahlertausch-Datum ein.

1 Selection

OFF

Es wird keine Meldung ausgegeben.

DATE

Die Meldung Strahlertausch wird an einem bestimmten Datum ausgegeben. Geben Sie das Datum in Warning Date ein.

TIME CONSTANT

Geben Sie in Max Time Constant eine maximale Zeitkonstante ein, wenn eine bestimmte Reaktionszeit der Messung nicht überschritten werden soll. (Die Reaktionszeit entspricht annähernd der Zeitkonstanten.)

Nach Eingabe der maximalen Zeitkonstanten errechnet der Detektor selbst das Datum an dem Strahlertausch gemeldet wird. Das Datum wird unter Date angezeigt.

ii WICHTIG

Um die Funktion **TIME CONSTANT** nutzen zu können, müssen Sie Evaluation Mode (Device Config ▶ Setup ▶ Cal Parameter ▶ **Cal Settings** ▶ **Evaluation Mode**) auf **AUTO SET** setzen. Denn in der Einstellung MANUAL wird die Zeitkonstante nicht automatisch angegeglichen.

2 Warning Date

Falls Sie **DATE** bei **Selection** ausgewählt haben, geben Sie hier das Datum ein, an dem Sie die Meldung Strahlertausch erhalten möchten (Format: MM/TT/JJJJ).

3 Max Time Constant

Falls Sie TIME CONSTANT bei Selection ausgewählt haben, müssen Sie hier die maximal zulässige Zeitkonstante eingeben.

Die maximal zulässige Zeitkonstante muss größer sein als die aktuelle, automatisch berechnete Zeitkonstante (siehe **Time Constant**). Der Wert der Zeitkonstanten entspricht in etwa der Ansprechzeit der Messung. Nach einer Eingabe wird in **Warning Date** das Datum angezeigt, an dem die Warnmeldung voraussichtlich ausgegeben wird.

Durch die automatische Zerfallskompensation wird die Zeitkonstante ständig erhöht, bis die maximale Zeitkonstante erreicht wird, woraufhin die Warnmeldung Strahlertausch gemeldet wird.

Zeigt die aktuelle Zeitkonstante an.

2.19 Build Up Alarm

Menüpfad: **Device Config** ► **Setup** ► **Signal Condition** ► **Built Up Alarm**.

Die Angabe bestimmt die Reaktionszeit in Sekunden, bis ein Buildup-Alarm ausgegeben wird. Die Zeitdauer ist abhängig von der Behälter-Füllgeschwindigkeit, d. h., der Zeit, die der Füllstand benötigt, um eine Füllstandsänderung von 5cm zu erfahren.

Die Angabe des Zeitraums ist für die richtige Auswertung des Buildup-Alarms erforderlich. Je länger Sie diese Zeit wählen, desto mehr verzögert sich die Alarmauswertung. Allerdings bauen sich Wandanbackungen in den meisten Fällen über eine Betriebsdauer von mehreren Stunden oder gar Tagen auf. Deshalb ist ein Wert für die **BU Delay Time** im Bereich von mehreren Minuten bis Stunden möglich. Geben Sie im Zweifelsfall eine etwas längere Zeit ein.

4 Time Constant

1 BU Delay Time

Band 3 Menüstruktur

2.20 Cal Parameter

Menüpfad: **Device Config** ▶ **Setup** ▶ **Cal Parameter**.

Dieses Menü ermöglicht Ihnen das Kalibrieren und Justieren des Messsystems und das Setzen der Parameter, mit denen die Messung durchgeführt werden soll.

Nachjustieren einer bereits kalibrierten Messung:

Die Zählraten in diesem Menü und den Untermenüs sind nicht zerfallskompensiert¹. Aus diesem Grund darf eine Änderung an der Kalibrierkennlinie, die erst nach mehreren Wochen erfolgt, nicht mit Daten aus Cal Parameter durchgeführt werden, sondern muss mit den Werten aus **Meas Parameter** gemacht werden. Diese Werte entsprechen den Daten mit denen das LB 480 aktuell misst. Die Daten in Meas Parameter enthalten auch die zerfallskompensierten Zählraten der Kalibrierpunkte, mit denen das LB 480 zuletzt kalibriert wurden. Um die zerfallskompensierten Werte zu erhalten, können sie **Recall** verwenden. Damit werden die aktuellen Werte aus Meas Parameter (Device Config ▶ Meas Parameter) hierher zurück kopiert.

i wichtig

Änderungen in diesen Parametern haben erst dann einen Einfluss auf die Messung wenn Sie den Befehl Calibrate aufrufen.

1 Cal Points

Führt zum Menü für die Kalibrierung (Seite 3-286).

2 Cal Settings

Führt zum Menü zur Eingabe der grundlegenden detektorspezifischen Einstellungen, die vor der Kalibrierung vorgenommen werden müssen (Seite 3-288).

3 Product Conditions

Führt zum Menü zur Eingabe der grundlegenden produktbezogenen Einstellungen, die vor der Kalibrierung vorgenommen werden müssen (Seite 3-293).

4 Adapt Calibration

Das Menü enthält Funktionen um ältere Kalibrierdaten neu zu übernehmen.

^{1.} Jeder Strahler verliert im Laufe der Zeit an Aktivität und wird schwächer, man spricht von einem Strahlerzerfall. Die am Detektor gemessene Impulsrate wird aus diesem Grund im Laufe der Zeit geringer. Der Prozess lässt sich über eine mathematische Funktion berechnen und wird bei den SENSseries-Detektoren automatisch kompensiert.

5 Calibrate

Mit diesem Menüpunkt aktivieren Sie die bei den Messungen ermittelten Kalibrierdaten. Dabei werden die Kalibrierdaten von **Cal Parameter** in **Meas Parameter** übertragen. Somit erhält der Detektor eine neue Kalibrierung, mit der zukünftig die Messwerte ermittelt werden.

Nach der Kalibrierung zeigt eine Statusmeldung, ob die Kalibrierdatenaktivierung erfolgreich durchgeführt werden konnte. Falls nicht, bleiben die Messparameter unverändert. Mögliche Statusmeldungen sind:

– 0-OK

Die durchgeführte Kalibrierung ist in Ordnung.

- 1-ERROR BACKGROUND

Die Zählrate für die Hintergrundstrahlung (Nulleffekt, Background) ist höher als die für die Kalibrierpunkte für Leer oder Voll (Lower Cal Pt-Empty oder Upper Cal Pt-Full).

- 2-ERROR CALIBRATION POINT

Die Leerzählrate ist niedriger als die Vollzählrate (Lower Cal Pt-Empty < Upper Cal Pt-Full).

- 3-ERROR THRESHOLD / TIME CONSTANT

Die Schaltschwelle (**Threshold**) liegt zu nahe an einem der Kalibrierpunkte für Leer (**Lower Cal Pt-Empty**) oder Voll (**Upper Cal Pt-Full**) oder die Zeitkonstante wurde bei der manuellen Kalibrierung zu klein gewählt. Der Fehler tritt auch auf, wenn die Zeitkonstante 999s überschreitet.

- 4-ERROR THRESHOLD OUT OF RANGE

Die Schaltschwelle (**Threshold**) plus oder minus der Hysterese überschreitet den zulässigen Bereich von 0% ... 100%.

- 5-ERROR BU TC

Die Zeitkonstante für den Build-up-Alarm liegt über 14.400 Sekunden. Dies liegt entweder daran, dass der Unterschied zwischen Leerzählrate und Vollzählrate zu gering ist (Lower Cal Pt-Empty \approx Upper Cal Pt-Full) oder dass der Grenzwert zu nahe an einem der Kalibrierpunkte für Leer (Lower Cal Pt-Empty) oder Voll (Upper Cal Pt-Full) liegt.

- 6-DATE ERROR

Ein Datum steht noch auf dem Standardwert 1.1.2000. Bei **Calibrate** den Parameter **Date** überprüfen. Bei **Restore** das Datum in **Restore Date** überprüfen.

- 7-CHECK ERROR

Der Status der Kalibrierparameter konnte nicht vollständing überprüft werden. Wiederholen Sie in diesem Fall die Kalibrierung. Tritt der Fehler erneut auf, so ist der Detektor, zumindest aber dessen Elektronik zu tauschen.

Band 3 Menüstruktur

HINWEIS

Die oben beschriebene Plausibilitätsprüfung kann nicht verhindern dass vom Anwender falsche Daten eingelesen werden. Im Zweifelsfall empfehlen wir einen Servicetechniker von BERTHOLD TECHNOLOGIES hinzuziehen.

6 Recall

Hiermit kopieren Sie den aktuellen Datensatz aus Meas Parameter nach Cal Parameter. Dies ermöglicht es Ihnen, die gültigen Parameter zu überarbeiten, ohne dass dies zunächst einen Einfluss auf die Messung hat. Nachdem Sie die Bearbeitung abgeschlossen haben, können Sie die geänderten Einstellungen mit Calibrate aktivieren.

Recall ist auch deshalb erforderlich, weil die Zählraten in den Kalibrierparametern (Cal Parameter) im Gegensatz zu den Zählraten der Messparameter (Meas Parameter) nicht zerfallskompensiert sind.

ii wichtig

Recall überschreibt alle Einstellungen des Menüs Cal Parameter.

2.21 Cal Points

Menüpfad: Device Config ▶ Setup ▶ Cal Parameter ▶ Cal Points.

ii wichtig

Änderungen in dieser Parametergruppe wirken sich erst dann aus, wenn Sie Calibrate aufrufen (Device Config ▶ Setup ▶ Cal Parameter ► Calibrate, Seite 3-283).

Dieses Menü ermöglicht Ihnen die Durchführung der Justierung des Messsystems.

Hiermit starten Sie das Einlesen der Zählraten. Während die Zählrate eingelesen wird, wird laufend der Mittelwert gebildet und angezeigt. Die Dauer des Einlesens legen Sie über ReadIn Time fest (Device Config ▶ Setup ▶ Cal Parameter ▶ Cal Settings ▶ ReadIn Time).

Wählen Sie zunächst aus, welchen Kalibrierpunkt Sie einlesen möchten:

BACKGROUND

Die Hintergrundstrahlung (Background) muss gemessen werden, damit der Detektor den Zerfall der Strahlungsquelle korrekt kompensieren kann. Stellen Sie vor der Messung sicher, dass Sie keine Strahlung von der Strahlenquelle mitmessen. Am einfachsten ist dies, wenn die Strahlenquelle noch nicht montiert ist. Schließen Sie andernfalls den Strahlengang und füllen Sie zusätzlich den Behälter.

LOWER-PT

Für diese Messung muss der Füllstand im Behälter unterhalb der Überwachungshöhe sein oder der Behälter muss ganz leer sein. Während sie einlesen, darf der Füllstand nicht über die Überwachungshöhe ansteigen und die Bedingungen im Behälter müssen soweit wie möglich den Bedingungen im Betrieb entsprechen. Sofern dies für Ihre Applikation zutrifft und den Strahlengang beeinflusst, betrifft dies z.B.:

- Gasdichte
- Rührer
- Kühl-/Heizmantel

1 ReadIn

Band 3 Menüstruktur

UPPER-PT

Diese Messung kann nur bei einer 2-Punkt-Kalibrierung durchgeführt werden (**Device Config** ▶ **Setup** ▶ **Cal Parameter** ▶ **Cal Settings** ▶ **Calibration Method**: **2-POINT**). Für die Messung muss der Füllstand im Behälter oberhalb der Überwachungshöhe sein oder ganz voll sein. Während sie einlesen, darf der Füllstand nicht unter die Schaltschwelle fallen und die Bedingungen im Behälter müssen soweit wie möglich den Bedingungen im Betrieb entsprechen. Sofern dies für Ihre Applikation zutrifft und den Strahlengang beeinflusst, betrifft dies z.B.:

- Gasdichte
- Rührer
- Kühl-/Heizmantel

Beim Einlesen der Zählrate wird die verbleibende Zeit bis zum Ende des Vorgangs angezeigt. Zum Schluss werden Sie aufgefordert, die ermittelte Zählrate mit **OK** zu bestätigen. Um den Einlesevorgang abzukürzen, können Sie jederzeit mit **OK** stoppen.

Der Background ist die Hintergrundstrahlung (Nulleffekt), die in der Umgebung vorhanden ist. Die Hintergrundstrahlung muss gemessen werden, damit der Detektor den Zerfall der Strahlungsquelle korrekt kompensieren kann.

Wählen Sie **ReadIn** zum Einlesen der Zählrate für die Hintergrundstrahlung. Falls Sie den Wert bereits kennen, können Sie ihn hier auch eingeben.

Zählrate bei leerem Behälter bzw. bei einem Füllstand unterhalb der Schaltschwelle.

▶ Wählen Sie *ReadIn* zum Einlesen der Zählrate. Falls Sie den Wert bereits kennen, können Sie ihn hier auch eingeben.

Zählrate bei vollem Behälter bzw. bei einem Füllstand oberhalb der Schaltschwelle.

Falls Sie bei Calibration Method (Device Config ➤ Setup ➤ Cal Parameter ➤ Cal Settings ➤ Calibration Method, Seite 3-288) die Einstellung 1-POINT gewählt haben, wird der Wert für Upper Cal Pt-Full automatisch aus dem Wert von Lower Cal Pt-Empty und den im Menü Product Conditions (Seite 3-293) angegebenen Parametern berechnet.

Wählen Sie **ReadIn** zum Einlesen der Zählrate, falls Sie bei Calibration Method die Einstellung **2-POINT** gewählt haben. Falls Sie den Wert bereits kennen, können Sie ihn hier auch eingeben.

2 Background

3 Lower Cal Pt-Empty

4 Upper Cal Pt-Full

2.22 Cal Settings

Menüpfad: Device Config ▶ Setup ▶ Cal Parameter ▶ Cal Settings.

In diesem Menü werden grundlegende Einstellungen zur Kalibrierung gemacht.

i WICHTIG

Änderungen in dieser Parametergruppe wirken sich erst dann aus, wenn Sie Calibrate aufrufen (Device Config ▶ Setup ▶ Cal Parameter ► Calibrate, Seite 3-283).

- Wählen Sie hier das Isotop (Nuklid), das in Ihrem Strahler verwendet wird:
- Co-60
- Cs-137
- **USER DEFINED**

Die Angabe steuert die automatische Zerfallskompensation. Die richtige Eingabe ist auch bei einer Einpunktkalibrierung und bei der Gasdichtekompensation wichtig. Das verwendete Isotop können sie am Typenschild der Abschirmung ablesen und aus Ihren Lieferunterlagen ersehen. Die Eingabe USER DEFINED ermöglicht es Ihnen, ein beliebiges Isotop zu verwenden. In diesem Fall werden weitere Parameter abgefragt: geben Sie die Halbwertszeit unter Half Life Time und den Absorbtionskoeffizienten unter Absorption an.

Was passiert, wenn Sie das falsche Isotop ausgewählt haben?

Durch die falsche Zerfallskompensation kommt es erst nach einigen Wochen oder Monaten zu Fehlmessungen. Sofern Sie auch Werte für die Produkt- oder Gasdichte eingeben, werden dann auch falsche Schaltschwellen (Alarmschwellen für den Füllstand) berechnet. Bei einer Einpunktkalibrierung wird bei einer falschen Isotopenanwahl auch der Kalibrierpunkt für 100% falsch berechnet.

1 Nuclide

2 Calibration Method

Sie können zwischen folgenden Kalibriermethoden auswählen:

1-POINT

Verwenden Sie die 1-Punkt-Kalibrierung nur, wenn ein Vollabgleich nicht möglich ist.

Bei dieser Methode ist ein Leerabgleich (Füllstand unterhalb der Überwachungshöhe) erforderlich (**Device Config** ▶ **Setup** ▶ Cal Parameter ▶ Cal Points ▶ ReadIn ▶ Read Lower Point). Anhand weiterer Eingaben wie Produktdichte und Messweg (Device Config ▶ Setup ▶ Cal Parameter ▶ Product Conditions) wird die Zählrate für den Vollabgleich (Füllstand oberhalb der Überwachungshöhe) dann automatisch ermittelt.

2-POINT

Bei der Zweipunkt-Kalibrierung sind ein Leerabgleich (Füllstand unterhalb der Überwachungshöhe) und ein Vollabgleich (Füllstand oberhalb der Überwachungshöhe) erforderlich. Führen Sie den Leerabgleich über **Device Config ▶ Setup ▶ Cal** Parameter ▶ Cal Points ▶ ReadIn ▶ Read Lower Point aus, den Vollabgleich über Device Config ▶ Setup ▶ Cal Parameter ▶ Cal Points ▶ ReadIn ▶ Read Upper Point durch.

Da der Vollabgleich tatsächlich gemessen und nicht nur errechnet wird, erreicht die Einstellung 2-Point eine bessere Anzeigegenauigkeit.

3 Switch Function

▶ Legen Sie hier fest, ob der Grenzschalter als High Alarm oder als Low Alarm verwendet wird. Die Schaltrichtung beeinflusst die Safe Fail-Funktion des digitalen Ausgangs (Open Collector). Um den Alarm auch als Signal über den Open Collector auszugeben, müssen Sie im Menü I/O Setup (Seite 3-296) Digital Out Function auf LS ALARM setzen.

Sie haben folgende Einstellmöglichkeiten:

MAX

Der Alarm wird bei Überschreitung der Schaltschwelle (Alarmschwelle für den Füllstand) ausgelöst (High Alarm).

MIN

Der Alarm wird bei Unterschreitung der Schaltschwelle (Alarmschwelle für den Füllstand) ausgelöst (Low Alarm).

MAX + BUILD UP

Der Alarm wird bei Überschreitung der Schaltschwelle ausgelöst (High Alarm). Zusätzlich erfolgt eine Überwachung, die einen Alarm bei Wandanbackungen¹ (Build-up) ausgibt. Voraussetzung für eine korrekte Funktion ist, dass sowohl die Zählrate für Leer als auch die Zählrate für Voll gemessen wurde. Bei der Messung des Leerwertes muss sicher gestellt sein, dass keine Wandanbackungen vorhanden sind.

4 Evaluation Mode

Legt fest, ob die Einstellungen für **Time Const** (Zeitkonstante), **Threshold** (Schaltschwelle) und **Hysteresis** (Hysterese) automatisch berechnet und laufend angepasst werden (Werkseinstellung), oder manuell auf einen festen Wert gesetzt werden können.

AUTO SET

Dies ist die Werkseinstellung, die möglichst beibehalten werden sollte. Sie stellt sicher, dass die oben aufgeführten Parameter laufend optimiert und angepasst werden und bei jeder Zerfallskompensation auch überprüft werden.

MANUAL SET

Verwenden Sie diese Einstellung nur dann, wenn es für Ihre Applikation unumgänglich ist und wenn Sie sich über die Konsequenzen der manuellen Eingabe von festen Werten bewusst sind. Fehlerhafte Eingaben, die die Schaltsicherheit gefährden, können in diesem Modus nur teilweise abgefangen werden.

i wichtig

Bei der manuellen Eingabe (MANUAL SET) muss die Zerfallskompensation berücksichtigt werden. Deshalb müssen Sie die Zeitkonstante so groß wählen, dass sie auch noch über Jahre hinweg gültig bleibt und nicht zu Fehlschaltungen führt. Siehe auch Time Const. In der Werkseinstellung (AUTO SET) wird bei der täglichen Zerfallskompensation zusätzlich auch die Schaltsicherheit kontrolliert.

54733-20BA1S 3 - 290 05.2025

Die Funktion ermöglicht die frühzeitige Erkennung von Wandanbackungen, d.h., noch bevor die sichere Schaltfunktion nicht mehr gewährleistet ist. Die Funktion **BUILD UP** erhöht allerdings automatisch die Zeitkonstante und damit auch die Reaktionszeit.

5 Time Constant

Zeigt die aktuelle Zeitkonstante an. Sie wird automatisch berechnet (Werkseinstellung), kann aber auch manuell auf einen festen Wert gesetzt werden. Die Zeitkonstante glättet das Ausgangssignal. Dabei können sowohl statistische Schwankungen als auch prozessbedingte Füllstandsschwankungen, z.B. durch Rührer, geglättet werden. Der Wert der Zeitkonstanten entspricht in etwa der Reaktionszeit der Messung. Je nach Einstellung bei **Evaluation Mode** werden entweder die berechnete Zeitkonstante angezeigt (**AUTO SET**) oder die Eingabe einer Zeit in Sekunden ermöglicht (**MANUAL SET**).

Wir empfehlen Ihnen die automatische Berechnung (**AUTO SET**) zu verwenden, sofern nicht wichtige Gründe dagegen sprechen.

Beachten Sie bei manueller Eingabe: Um Fehlschaltungen zu vermeiden, muss die Zeitkonstante ausreichend groß sein. Gleichzeitig verzögert aber eine Erhöhung der Zeitkonstanten die Reaktion der Messung auf eine Füllstandsüberschreitung, daher sollte die Zeitkonstante auch nicht zu groß gewählt werden. Bei Standardapplikationen und korrekter Strahler-Detektor-Auslegung hat sich eine Zeitkonstante von 20 Sekunden bewährt (siehe auch *Kapitel 7.5*).

Sofern bei automatisch berechneter Zeitkonstante eine maximale Zeitkonstante nicht überschritten werden soll, können Sie über Max. Time. Constant einen Grenzwert festlegen, damit bei Überschreiten eine Warnmeldung erfolgt (Device Config ▶ Setup ▶ Signal Condition ▶ Source Exchange ▶ Max. Time. Constant, Seite 3-282).

6 Threshold

Zeigt die aktuelle Schaltschwelle (Alarmschwelle für den Füllstand) an. Sie wird automatisch berechnet (Werkseinstellung), kann aber auch manuell auf einen festen Prozentwert gesetzt werden (Evaluation Mode: MANUAL SET). Wir empfehlen Ihnen die automatische Berechnung (AUTO SET) zu verwenden, sofern nicht wichtige Gründe dagegen sprechen.

Wird der Alarm für die Schaltschwelle ausgelöst, dann werden folgende Signale gesetzt:

- der Stromausgang geht auf 4 bzw. 20mA
- Alarm State geht auf ON
- der Open Collector schaltet

Sie können Ihre Einstellung für die Schaltschwelle (Alarmschwelle für den Füllstand) mit der optimalen Einstellung vergleichen, indem Sie bei Evaluation Mode auf AUTO SET umschalten. Ihre manuellen Eingaben gehen dabei nicht verloren.

Beachten Sie bei Eingabe eines Festwertes: Je weiter Sie von der optimalen Einstellung für die Schaltschwelle abweichen, desto größer muss anschließend die Zeitkonstante gewählt werden.

Zeigt die aktuelle Hysterese an. Sie wird automatisch berechnet (Werkseinstellung), kann aber auch manuell auf einen festen Wert gesetzt werden (Evaluation Mode: MANUAL SET). Die Hysterese liegt symmetrisch um die Schaltschwelle und verhindert ein Hinund Herschalten, das durch Messwertschwankungen ausgelöst würde.

Legen Sie hier fest, über welche Zeitdauer die Zählrate eingelesen wird.

Über diese Zeitdauer wird die statistische Schwankung der Zählrate gemittelt. Je länger sie ist, desto besser ist der Mittelwert. Eine Zeitdauer von 60s (Werkseinstellung) ist in der Regel ausreichend.

7 Hysteresis

8 ReadIn Time

2.23 Product Conditions

Menüpfad: Device Config ▶ Setup ▶ Cal Parameter ▶ Product Conditions.

Dieses Menü dient zur Eingabe der grundlegenden produktbezogenen Einstellungen, die vor der Kalibrierung vorgenommen werden müssen.

Eingaben in diese Parameter sind nur in folgenden Fällen erforderlich:

- bei einer 1-Punkt-Kalibrierung, wenn ein Vollabgleich nicht möglich ist.
- bei Behältern mit Gasdruck und wenn die Kalibrierung nicht bei gleichem Gasdruck wie im Betrieb durchgeführt werden kann
- wenn der Grenzschalter bei einem Schüttgut an einem definierten Schüttkegel-Durchmesser schalten soll.

WICHTIG

Änderungen in dieser Parametergruppe wirken sich erst dann aus, wenn Sie Calibrate aufrufen (Device Config ▶ Setup ▶ Cal Parameter ▶ Calibrate, Seite 3-283).

1 Measuring Path

Diese Einstellung ist nur bei der Verwendung der Calibration Method 1-POINT (Device Config ▶ Setup ▶ Cal Parameter ▶ Cal Settings, Seite 3-288), bei Anwendungen mit Gasdichtekompensation oder in Verbindung mit Bulk Cone Diameter nötig.

Geben Sie in diesen Fällen den Messweg des Strahlenganges im Produkt, das gemessen werden soll, in mm ein. Im Regelfall entspricht dies dem Innendurchmesser des Behälters.

2 Product Density

Diese Einstellung ist nur bei der Verwendung der Calibration Method 1-POINT (Device Config ▶ Setup ▶ Cal Parameter ▶ Cal Settings, Seite 3-288) oder in Verbindung mit Bulk Cone Diameter nötig.

Bei Flüssigkeiten ist hier die Flüssigkeitsdichte in kg/m³ einzugeben, bei Schüttgütern die Schüttdichte. Ist die Flüssigkeitsdichte bzw. die Schüttdichte nur ungefähr bekannt, dann ist der niedrigste anzunehmende Wert einzugegeben.

3 Bulk Cone Diameter

Die Einstellung dient zur Schaltpunktbestimmung bei Schüttkegelmessungen: Bei Schüttkegelmessungen soll die Schaltschwelle häufig gezielt bei einem bestimmten Schüttkegeldurchmesser liegen.

Geben Sie hier einen Wert größer 0mm ein, dann wird die Schaltschwelle (Threshold) anhand des Schüttkegeldurchmessers berechnet, sofern der Messweg (**Measuring Path**) und die Produktdichte (**Product Density**) angegeben sind.

Beachten Sie bitte, dass die Zeitkonstant sehr groß werden kann, wenn der Schüttkegeldurchmesser zu klein oder zu groß gewählt wird.

4 Setup Gas Density

Verwenden Sie diesen Parameter nur, wenn während der Kalibrierung eine andere Gasdichte vorhanden ist, als unter Betriebsbedingungen. Mithilfe der Gasdichte wird dann aus der Zählrate bei Lower Cal Pt-Empty (Device Config ➤ Setup ➤ Cal Parameter ➤ Cal Points ➤ Lower Cal Pt-Empty) eine kompensierte Zählrate ermittelt, die Sie unter Op Lower Point ablesen können.

Geben Sie hier die Gasdichte in kg/m³ ein, die während der Kalibrierung vorhanden ist. In der Regel ist dies 0 kg/m³.

Voraussetzung für die Korrektur sind korrekte Eingaben bei folgenden Menüpunkten:

- Setup Gas Density
- Op Gas Density
- Measuring Path
- Nuclide

Gasdruck <1bar

Gasdichten mit einem Druck unter 1bar sind in der Regel vernachlässigbar, Sie können daher 0kg/m³ eingeben.

Gasdruck >1bar

Ermitteln Sie die Gasdichte unter Betriebsbedingungen sehr sorgfältig, um den Fehler der automatischen Kompensation möglichst klein zu halten. Besser und genauer wäre die Messung der Leerzählrate mit einem Gas und einer Gasdichte, die unter Betriebsbedingungen zu erwarten ist.

Gase mit Wasserstoff

Ist Wasserstoff im Gas enthalten, dann kommt es zu einer stärkeren Absorption der Gammastrahlung, als durch die eigentliche Gasdichte zu erwarten wäre. Dieser Effekt kann durch ein entsprechendes Erhöhen der einzugebenden Gasdichte ausgeglichen werden. Sollten Sie die verstärkte Absorption nicht ermitteln können, wenden Sie sich bitte an BERTHOLD TECHNOLOGIES.

5 Op Gas Density

Geben Sie hier die Gasdichte in kg/m³ ein, die unter Betriebsbedingungen zu erwarten ist.

Verwenden Sie diesen Parameter nur, wenn während der Kalibrierung eine andere Gasdichte vorhanden ist, als unter Betriebsbedingungen. Mithilfe der Gasdichte wird dann aus der Zählrate bei Lower Cal Pt-Empty (Device Config ➤ Setup ➤ Cal Parameter ➤ Cal Points ➤ Lower Cal Pt-Empty) eine kompensierte Zählrate ermittelt, die Sie unter Op Lower Point ablesen können.

Voraussetzung für die richtige Korrektur sind korrekte Eingaben bei folgenden Menüpunkten:

- Setup Gas Density
- Op Gas Density
- Measuring Path
- Nuclide

Gasdruck <1bar

Gasdichten mit einem Druck unter 1bar sind in der Regel vernachlässigbar, Sie können daher 0kg/m³ eingeben.

Gasdruck >1bar

Ermitteln Sie die Gasdichte unter Betriebsbedingungen sehr sorgfältig, um den Fehler der automatischen Kompensation möglichst klein zu halten. Besser und genauer wäre die Messung der Leerzählrate mit einem Gas und einer Gasdichte, die unter Betriebsbedingungen zu erwarten ist.

Gase mit Wasserstoff

Ist Wasserstoff im Gas enthalten, dann kommt es zu einer stärkeren Absorption der Gammastrahlung, als durch die eigentliche Gasdichte zu erwarten wäre. Dieser Effekt kann durch ein entsprechendes Erhöhen der einzugebenden Gasdichte ausgeglichen werden. Sollten Sie die verstärkte Absorption nicht ermitteln können, wenden Sie sich bitte an BERTHOLD TECHNOLOGIES.

Wenn Sie die Gasdichte-Kompensation verwenden, wird hier die Zählrate angezeigt, die sich unter Betriebsbedingungen ergeben müsste. Der angezeigte Wert ist nicht änderbar und abhängig von:

- Zählrate bei Lower Cal Pt-Empty
- Setup Gas Density
- Op Gas Density
- Measuring Path
- Nuclide

6 Op Lower Point

2.24 Adapt Calibration

Menüpfad: **Device Config** ► **Setup** ► **Cal Parameter** ► **Adapt Calibration**.

Dieses Menü ermöglicht es Kalibrierdaten zu aktivieren, die zu einem früheren Zeitpunkt abgespeichert wurden. Dabei werden die Daten automatisch zerfallskompensiert.

Die Funktion wird z. B. beim Tausch der Detektor-Elektronik verwendet, um sie anschließend wieder mit dem originalen Parametersatz in Betrieb zu nehmen.

Restore Upload arbeitet ähnlich wie **Calibrate**, berücksichtigt aber ein Gültigkeitsdatum von z. B. älteren Kalibrierdaten und führt automatisch eine Zerfallskompensation durch.

Hierzu muss zuvor der originale Parametersatz im HOST oder auf dem HART[®]-Kommunikator als Offline-Parameter abgespeichert worden sein. Die Offline-Parameter können dann wieder in den Detektor geladen werden. Anschließend wird mit **Restore Upload** dieser Parametersatz aktiviert. Dabei wird automatisch das Gültigkeitsdatum (**Restore Date**) der Kalibrierung, das in den Offline-Parametern enthalten ist, mit dem aktuellen Datum im Detektor verglichen und die Kalibrierzählraten entsprechend angepasst.

Restore Date enthält das Gültigkeitsdatum das für die Funktion Restore Upload verwendet wird. Es kann sowohl mit dem Kalibrierdatensatz geladen werden als auch von Hand eingegeben werden.

2.25 I/O Setup

Menüpfad: **Device Config** ▶ **Setup** ▶ **I/O Setup**.

Dieses Menü ermöglicht Ihnen das Einstellen der analogen und digitalen Ein- bzw. Ausgänge sowie der Schnittstellen.

Führt zum Menü mit den Einstellungen für den Stromausgang (**Seite 3-297**).

Führt zum Menü mit den Einstellungen für den digitalen Ausgang (**Seite 3-299**).

Führt zum Menü mit den Einstellungen für den digitalen Eingang (**Seite 3-302**).

Führt zum Menü mit den Einstellungen für die HART®-Schnittstelle (**Seite 3-303**).

1 Restore Upload

2 Restore Date

1 Current Output

2 Digital Output

3 Digital Input

4 HART Interface

2.26 Current Output

Menüpfad: **Device Config** ▶ **Setup** ▶ **I/O Setup** ▶ **Current** Output.

1 Current Loop Monitoring

Aktivieren bzw. deaktivieren Sie hier die Überwachung des 4-20mA-Stromsignals. Die Überwachung kontrolliert, ob der gesetzte Strom auch tatsächlich in der Stromschleife fließt, und meldet bei einer Abweichung einen Fehler.

Sie haben folgende Einstellmöglichkeiten:

ENABLED

Die Überwachung ist aktiviert (Werkseinstellung).

Sofern keine zwingenden Gründe vorliegen, sollten Sie diese Einstellung beibehalten. Die Einstellung wird automatisch aktiviert, wenn der Safety Mode ausgewählt wurde.

DISABLED

Die Überwachung ist deaktiviert. Der HART-Kommunikator weist mit einer Meldung darauf hin.

Die Überwachung kann bei einer groben Abweichung oder einem Wackelkontakt dazu führen, dass der Fehlerzustand nur noch mit Hilfe eines Software-Resets zurückgesetzt werden kann. Den Software-Reset können Sie im Menü **Service** (**Device Config** ▶ **Setup** ▶ Service ▶ Reset Device, Seite 3-304) oder durch Aus- und Einschalten der Stromversorgung durchführen.

2 Loop Alarm Type

Legen Sie hier den Fehlerstrom fest, d.h. den Strom, der im Fehlerfall ausgegeben werden soll.

ii wichtig

Im Safety Mode sind nur die Einstellungen High und Low zulässig.

Sie haben folgende Einstellmöglichkeiten:

High

Der Stromausgang wird im Fehlerfall auf >21mA gesetzt.

Der Stromausgang wird im Fehlerfall auf <3,6mA gesetzt.

Hold Last Value

Der Stromausgang hält im Fehlerfall den letzten Messwert.

Value

Der Stromausgang wird im Fehlerfall auf den Stromwert gesetzt, der in Error Current Value festgelegt wurde.

3 Error Current Value

Definieren Sie hier hier den Fehlerstrom in mA, falls Sie Value bei Loop Alarm Type gewählt haben. Bei den Einstellungen **High** und **Low** werden die entsprechenden Stromwerte (>21mA/<3,6mA) angezeigt.

4 Current Lower Limit

Untere Strombereichsgrenze für den 4–20mA- Stromausgang.

Für Justierzwecke, bzw. um Messbereichsunterschreitungen sicher zu erkennen, wird der für das Messsignal zur Verfügung stehende Strombereich über den Standardbereich von 4-20 mA hinaus erweitert. Nach Vorgaben der Namur (NE 43) darf der untere Stromwert dabei allerdings nicht kleiner als 3,8mA sein. Sie können den minimalen Wert aber im Bereich von 3,8 bis 4mA frei festlegen.

5 Current Upper Limit

Obere Strombereichsgrenze für den 4-20mA- Stromausgang.

Für Justierzwecke, bzw. um Messbereichsüberschreitungen sicher zu erkennen, wird der für das Messsignal zur Verfügung stehende Strombereich über den Standardbereich von 4-20 mA hinaus erweitert. Nach Vorgaben der Namur (NE 43) darf der obere Stromwert dabei allerdings nicht größer als 20,5mA sein. Sie können den maximalen Wert aber im Bereich von 20 bis 20,5mA frei festlegen.

6 D/A trim

Dieser Menüpunkt ermöglicht Ihnen, den Stromausgang zu justieren. Sie benötigen hierzu ein Strommessgerät, das in die Stromschleife eingeschleift wird. In einem menügeführten Ablauf werden dann nacheinander 4mA und 20mA vorgegeben. Sie werden jeweils aufgefordert, den Ist-Wert Ihres Strommessgerätes einzugeben.

WICHTIG

Der Widerstand am Stromausgang muss stets weniger als 5000hm, aber mindestens 2500hm betragen.

54733-20BA1S 3 – 298 05.2025

Menüstruktur

2.27 **Digital Output**

Menüpfad: Device Config ▶ Setup ▶ I/O Setup ▶ Digital Output.

Der digitale Ausgang bietet Ihnen eine Beschaltung für verschiedene Signale. Ohne zusätzliche I/O-Karten ist der digitale Ausgang ein Open Collector, der Safe Fail geschaltet wird. Das heißt, dass der Transistor leitend ist, solange kein Alarm gemeldet wird und im Alarmfall sperrt. Weitere Informationen zum digitalen Ausgang finden Sie in Band 2 im Kapitel 3, "Elektrische Installation", Seite 2-195.

ii wichtig

Falls Sie im Menüpunkt Error Handling (Device Config ▶ Setup **▶** Signal Condition **▶** Signal Parameterg **▶** Error Handling) die Einstellung NORMAL verwenden, werden ausschließlich Fehler über den Stromausgang gemeldet. Warnmeldungen können dann nur über einen der folgenden Signalausgänge empfangen werden:

- über den digitalen Ausgang als binäres Signal
- über das HART®-Signal als Textmeldung

1 Digital Out Function

Legen Sie hier die Schaltfunktion des digitalen Ausgangs fest. Sie haben folgende Einstellmöglichkeiten:

LS ALARM

Der Alarm wird ausgelöst, wenn die Schaltschwelle (Alarmschwelle für den Füllstand) über- bzw. unterschritten wird, d.h., er reagiert parallel zum Stromausgangssignal. Das Schaltverhalten ist abhängig von der bei **Switch Function** gewählten Schaltfunktion (Device Config ▶ Setup ▶ Cal Parameter ▶ Cal Settings ▶ Switch Function, Seite 3-288). Im Fehlerfall geht auch der digitale Ausgang auf Alarm.

DET. TEMP

Der Alarm wird ausgelöst, wenn die Detektortemperatur den zulässigen Temperaturbereich über- bzw. unterschreitet. Der Temperaturbereich wird bei **Sensor Temperature** festgelegt (Device Config ▶ Setup ▶ I/O Setup ▶ Digital Output ▶ Temp. Threshold Settings, Seite 3-313).

HOLD

Der Alarm wird ausgelöst, wenn die Messung im Haltezustand ist, d.h., der Messwert ist eingefroren. Dies kann z.B. durch den digitalen Eingang oder durch RID ausgelöst werden.

WARNING + ERROR

Der Alarm wird ausgelöst, wenn der Detektor einen Fehler oder eine Warnung meldet. Eine Liste möglicher Fehlerursachen und Maßnahmen zur Fehlerbeseitigung finden Sie in Kapitel 8 ab Seite 3-361.

BUILD UP

Der Alarm wird ausgelöst, wenn Wandanbackungen bzw. Produktanhaftungen an der Behälterwand erkannt wurden, die das Schaltverhalten der Messung beeinträchtigen könnten. Die Funktion ist nur dann wählbar, wenn Sie MAX + BUILD UP bei Switch Function gewählt haben (Device Config ▶ Setup ▶ Cal Parameter ▶ Cal Settings ▶ Switch Function, Seite 3-**288**).

Der Build-up-Alarm wird auch dann ausgegeben, wenn sie WARNING + ERROR auswählen.

RAD. INTERFERENCE

Der Alarm wird ausgelöst, wenn Störstrahlung erkannt wurde. Die Funktion ist nur dann wählbar, wenn Sie RAD. INTERFERENCE bei Response Mode gewählt haben (Device Config ▶ Setup ▶ Signal Condition ▶ Radiation Interference ▶ Response Mode, Seite 3-279).

Der Alarm für RAD. INTERFERENCE wird auch dann ausgegeben, wenn sie WARNING + ERROR auswählen.

2 Digital Out State

Zeigt den aktuellen Wert des digitalen Ausgangs an. Ist der Testmodus aktiv, dann wird auch der Testwert angezeigt. Folgende Zustände können angezeigt werden:

- Normal
- Alarm

3 Temp. Threshold Settings

Führt zum Menü für die temperaturbezogenen Einstellungen (Seite 3-301).

2.28 Temp. Threshold Settings

Menüpfad: Device Config ▶ Setup ▶ I/O Setup ▶ Digital Output ▶ Temp. Threshold Settings.

1 Temp. Upper Limit

Oberer Grenzwert für die Detektortemperatur.

Sie können über den digitalen Ausgang einen Alarm signalisieren lassen, wenn diese Temperatur überschritten wird. Setzen Sie hierzu den digitalen Ausgang auf die Funktion **DET. TEMP**. Der Alarm wird dabei auch dann signalisiert, wenn die minimale Detektor Temperatur (Temp. Lower Limit) unterschritten wird.

Sie können diese Funktion z.B. als Voralarm für die Erkennung einer Übertemperatur verwenden oder den Kühlwasserkreislauf des Detektors damit steuern, sodass bei erhöhter Temperatur der Kühlwasserfluss gestartet wird.

2 Temp. Lower Limit

Unterer Grenzwert für die Detektortemperatur.

Sie können über den digitalen Ausgang einen Alarm signalisieren lassen, wenn diese Temperatur unterschritten wird. Setzen Sie hierzu den digitalen Ausgang auf die Funktion DET. TEMP. Der Alarm wird dabei auch dann signalisiert, wenn die maximale Detektor Temperatur (Temp. Upper Limit) überschritten wird.

Sie können diese Funktion als Voralarm für Untertemperatur verwenden, damit eine eventuell angeschlossene Wasserkühlung nicht einfriert, oder indem eine Heizung zugeschaltet wird.

3 Temp. Hysteresis

Hysterese für die Temperaturgrenzwerte.

4 Temp. Unit

Einheit für die Detektortemperatur. Die Temperatur kann in Fahrenheit oder in Celsius angezeigt werden.

5 Device Temp.

Zeigt die Temperatur im Inneren des Detektors an.

2.29 **Digital Input**

Menüpfad: Device Config ▶ Setup ▶ I/O Setup ▶ Digital Input.

Der digitale Eingang kann vom Prozessleitsystem aus angesteuert werden. Die Reaktion erfolgt bei einem Kurzschluss des Eingangs, das Signal muss prellfrei sein.

i WICHTIG

Wird **Safety Mode** aktiviert, wird automatisch der Digitale Eingang deaktiviert.

Der digitale Eingang ist nur als Option erhältlich. Er ist erhältlich für Versionen mit HART®-Signal, aber nicht für Detektoren mit eigensicherem Signalausgang.

Legen Sie hier die Schaltfunktion des digitalen Eingangs fest. Sie haben folgende Einstellmöglichkeiten:

Der digitale Eingang ist deaktiviert.

HOLD

Die Messung wird eingefroren (Haltemodus), solange der Kontakt geschlossen ist.

EMPTY

Führt einen Leerabgleich durch. Der Eingang muss dazu nur kurzzeitig geschlossen werden, um den Vorgang zu starten.

FULL

Führt einen Vollabgleich durch. Der Eingang muss dazu nur kurzzeitig geschlossen werden, um den Vorgang zu starten.

2 Digital In State

1 Digital In Function

Zeigt an, ob der Eingang offen oder geschlossen ist.

2.30 HART Interface

Menüpfad: **Device Config** ► **Setup** ► **I/O Setup** ► **HART Interface**.

1 Poll Addr

2 Set Poll Address

Zeigt die aktuelle Polling-Adresse an. Die Adresse kann mit **Set Poll Address** gesetzt werden.

Hiermit können Sie die Polling-Adresse bei Multidrop-Betrieb setzen.

Geben Sie nur dann eine Polling-Adresse >0 ein, wenn der Multidrop-Mode verwendet wird, um mehrere HART[®]-Geräte an einer Stromschleife zu betreiben. Belassen Sie ansonsten den Wert auf 0, da bei einer Polling-Adresse >0 der Stromausgang keine Funktion mehr hat.

Um den Multidrop Betrieb zu verwenden muss der Stromausgang passiv (Sink Mode) sein.

Multidrop Betrieb

Das Host-Terminal verwendet zur Identifizierung des Feldgerätes den Multidrop-Mode, wenn mehr als ein HART $^{\mathbb{R}}$ -Gerät an dieselbe HART $^{\mathbb{R}}$ -Schleife angeschlossen ist. Ab HART $^{\mathbb{R}}$ 6 können bis zu 63 HART $^{\mathbb{R}}$ -Geräte an einer HART $^{\mathbb{R}}$ -Schleife miteinander verbunden werden. Jedes Gerät muss eine andere Polling-Adresse zwischen 1 und 63 besitzen.

Wird eine Adresse eingestellt, die höher ist als 0, so wird automatisch der Multidrop-Mode gewählt und der Stromausgang wird auf den festen Stromwert von $4\,\text{mA}$ umgeschaltet. Damit steht nur noch die digitale HART®-Kommunikation zur Verfügung.

WICHTIG

Für eine sichere HART®-Kommunikation muss der Stromausgang mit mindestens 2500hm und maximal 5000hm belastet werden.

3 Num Reg Preams

Anzeige der angeforderten Präambeln während der Kommunikation zwischen Detektor und Kommunikator, um den Start der Kommunikation einzuleiten.

Der Wert ist auf 3 festgelegt und kann nicht verändert werden.

4 Num Resp Preams

Anzahl der zurückgesendeten Präambeln während der Kommunikation zwischen Detektor und Kommunikator, um den Start der Kommunikation einzuleiten.

Der Standardwert ist 5. Bei einer höheren Zahl wird die Kommunikation geringfügig verlangsamt. Der Einstellbereich geht von 5 bis 20.

2.31 Service

Menüpfad: **Device Config** ▶ **Setup** ▶ **Service**.

Dieses Menü ermöglicht Ihnen, verschiedene Testfunktionen aufzurufen, den Lizenzschlüssel einzugeben und ein Detektor-Reset durchzuführen.

Führt zum Menü für die Anzeige des Anodenstroms des Photomultipliers (PMT) (**Seite 3-305**).

Führt zum Menü für die Anzeige verschiedener Detektortemperaturen (**Seite 3-305**).

Führt zum Menü für verschiedene Testfunktionen (**Seite 3-306**).

Führt zum Menü für die Plateaumessung und Anzeige der Plateauwerte (Seite 3-310).

Der License Key ermöglicht es Ihnen, den Detektor für andere Anwendungen (Füllstand, Dichte) freizuschalten. Einen License Key erhalten sie über Ihren Vertriebspartner oder direkt von der BERTHOLD TECHNOLOGIES GmbH & Co. KG. Notieren Sie sich Ihren License Key zur Sicherheit in Ihre Betriebsanleitung. Jeder Detektor hat einen eigenen License Key.

Der Menüpunkt bietet Ihnen verschiedene Möglichkeiten, um den Detektor oder bestimmte Funktionen zurückzusetzen:

• **SW RESET** (Software Reset)

Startet den Detektor neu. Die Funktion entspricht dem Ausund wieder Einschalten der Versorgungsspannung.

FACTORY RESET

Setzt die meisten Einstellungen auf Werkseinstellung zurück. Einige Einstellungen wie die Justage des Stromausgangs und der License Key bleiben jedoch erhalten.

1 PMT

2 Sensor Temperature

3 Test

4 Plateau

5 License Key

6 Reset Device

2.32 PMT

Menüpfad: **Device Config ▶ Setup ▶ Service ▶ PMT**.

Dieses Menü ermöglicht die Qualifizierung des Photomultipliers (PMT) nach Rücksprache mit BERTHOLD TECHNOLOGIES. Erhöhte Stromwerte am Multiplier deuten auf einen starken Strahlenpegel (hervorgerufen z.B. durch Schweißnahtprüfungen), oder auf einen Defekt am PMT, oder der HV-Regelung hin.

1 HV Live Anzeige der aktuellen HV (Hochspannung) am Photomultiplier. Falls

der HV Mode auf AUTO gesetzt ist (Normalbetrieb), muss sich der Wert in HV Live, über mehrere Sekunden betrachtet, ändern.

2 HV Feedback Anzeige des zurückgelesenen HV-Wertes, der tatsächlich am Multi-

plier ansteht. Die Anzeige dient zur Kontrolle der HV.

3 Meas CH CPS Zählrate im Messkanal.

4 Control CH CPS Zählrate im Regelkanal.

5 Auxiliary CH CPS Zählrate im Ersatzkanal.

6 PMT Current Anzeige des aktuellen Anodenstroms.

7 PMT Current Max Anzeige des gespeicherten Maximalwertes für den Multiplier-Strom

(PMT Current).

8 Reset Current Extrema Löscht den Maximalwert des Multiplier-Stroms (PMT Current

Max).

Sensor Temperature

Menüpfad: Device Config ▶ Setup ▶ Service ▶ Sensor Temperature.

Dieses Menü ermöglicht die Anzeige verschiedener Detektortemperaturen.

1 Device Temp. Anzeige der aktuellen Detektortemperatur. Die Temperatur wird in

der Elektronik des Detektors gemessen.

2 Device Temp. Min Anzeige der niedrigsten gemessenen Temperatur.

3 Device Temp. Max Anzeige der höchsten gemessenen Temperatur.

4 Reset Temp Extrema Löscht die gespeicherten Werte in Device Temp. Min und Device

Temp. Max.

2.34 Test

Menüpfad: **Device Config** ▶ **Setup** ▶ **Service** ▶ **Test**.

Diese Menüs ermöglichen Ihnen, verschiedene Tests am Detektor durchzuführen. Alle Tests wirken direkt und werden nicht durch die Zeitkonstante verzögert.

Wird mit dem Passwort verriegelt oder wird der Safety Mode aktiviert, dann werden automatisch alle Testeinstellungen deaktiviert.

Führt zum Menü mit verschiedenen Testmöglichkeiten für den Detektor (**Seite 3-306**).

Führt zum Menü mit verschiedenen Testmöglichkeiten für die digitalen Ein- und Ausgänge (**Seite 3-308**).

2.35 Test Settings

Menüpfad: Device Config ▶ Setup ▶ Service ▶ Test ▶ Test Settings.

Dieses Menü ermöglicht Ihnen, durch Simulation Ihre Kalibriereinstellung das Messsignal zu prüfen.

Hiermit können Sie überprüfen, ob der Prozesswert korrekt vom Feldgerät zum Prozessleitsystem übermittelt wird.

Um einen Füllstandsmesswert zu simulieren, müssen Sie:

- 1. Einen Füllstandswert bei Level eingeben.
- 2. FIXED VALUE bei Level Mode auswählen.

WICHTIG

Vergessen Sie nicht, nach dem Test von **FIXED VALUE** wieder auf **NORMAL** umzuschalten, sonst bleibt Ihr Messsignal auf diesem Wert eingefroren.

 Geben Sie hier den Wert ein, der simuliert werden soll.
 Um die Simulation zu aktivieren, müssen Sie FIXED VALUE bei Level Mode einstellen.

1 Test Settings

2 I/O Test Settings

1 Level Mode

2 Level

3 Cps Average Mode

Hiermit können Sie überprüfen, ob Ihre Kalibrierung korrekt ist. Geben Sie dazu eine Zählrate ein und kontrollieren Sie anschließend den damit simulierten Füllstandsmesswert.

Um einen Füllstandsmesswert über eine Zählrate zu simulieren, müssen Sie:

- 1. FIXED VALUE bei Cps Average Test auswählen.
- 2. Eine Zählrate bei Cps Average Mode eingeben.

WICHTIG

Vergessen Sie nicht, nach dem Test von **FIXED VALUE** wieder auf **NORMAL** umzuschalten, sonst bleibt Ihr Messsignal auf diesem Wert eingefroren.

4 Cps Average Test

 Geben Sie hier den Wert ein, der simuliert werden soll.
 Um die Simulation zu aktivieren, müssen Sie FIXED VALUE bei Cps Average Mode einstellen.

5 Device Temp. Mode

Hiermit können Sie überprüfen, ob Über- bzw. Untertemperatur über den digitalen Ausgang signalisiert wird. Geben Sie dazu eine Test-Temperatur ein und überprüfen Sie anschließend das Signal am digitalen Ausgang.

Um den digitalen Ausgang mit einer Test-Temperatur zu prüfen, müssen Sie:

- Den digitalen Ausgang über Digital Out Function auf DET.
 TEMP gesetzt haben (Device Config ➤ Setup ➤ I/O Setup ➤ Digital Output ➤ Digital Out Function, Seite 3-299).
- 2. FIXED VALUE bei Device Temp. Mode auswählen.
- 3. Einen Temperaturwert bei **Device Temp. Test** eingeben.

WICHTIG

Vergessen Sie nicht, nach dem Test von **FIXED VALUE** wieder auf **NORMAL** umzuschalten, sonst bleibt die Temperatursignalisierung eingefroren.

6 Device Temp. Test

Geben Sie hier einen Temperaturwert ein, um den digitalen Ausgang als Signalausgang für Über- bzw. Untertemperatur zu testen.

Um die Simulation zu aktivieren, müssen Sie **FIXED VALUE** bei **Device Temp. Mode** einstellen.

2.36 I/O Test Settings

Menüpfad: Device Config ▶ Setup ▶ Service ▶ Test ▶ I/O Test Settings.

Dieses Menü ermöglicht Ihnen, verschiedene Tests am analogen sowie an den digitalen Ein- und Ausgängen durchzuführen.

1 Digital Out Mode Um den Test zu aktivieren, müssen Sie:

- 1. FIXED VALUE bei Digital Out Mode auswählen.
- 2. CLOSED oder OPEN bei Digital Out Test State eingeben.

WICHTIG

Vergessen Sie nicht, nach dem Test von **FIXED VALUE** wieder auf **NORMAL** umzuschalten, sonst bleibt die Signalisierung bestehen.

2 Digital Out Test State

3 Digital In Mode

▶ Wählen Sie hier **OPEN** bzw. **CLOSED**, um die jeweilige Reaktion am digitalen Ausgang zu überprüfen.

Um die Simulation zu aktivieren, müssen Sie **FIXED VALUE** bei **Digital Out Mode** einstellen.

Hiermit können Sie ein Signal am digitalen Eingang simulieren und dessen Auswirkung auf den Detektor überprüfen.

Um den Test zu aktivieren, müssen Sie:

- Eine Funktion für den digitalen Eingang über Digital In Function gesetzt haben (Device Config ➤ Setup ➤ I/O Setup ➤ Digital Input ➤ Digital In Function, Seite 3-302).
- 2. FIXED VALUE bei Digital In Mode auswählen.
- 3. CLOSED oder OPEN bei Digital In Test State eingeben.

i WICHTIG

Vergessen Sie nicht, nach dem Test von **FIXED VALUE** wieder auf **NORMAL** umzuschalten, sonst bleibt die Signalisierung bestehen.

4 Digital In Test State

Wählen Sie hier OPEN bzw. CLOSED, um die Reaktion des Detektors zu überprüfen.

Um die Simulation zu aktivieren, müssen Sie **FIXED VALUE** bei **Digital In Mode** einstellen.

5 Loop Current Mode

Zeigt an, ob der Stromausgang aktiv oder eingefroren ist. Folgende Anzeigen sind möglich:

ENABLED

Der Stromausgang ist aktiv.

DISABLED

Der Stomausgang ist eingefroren.

Der Stromausgang wird in folgenden Fällen eingefroren:

- wenn er auf Fehlerstrom gesetzt ist
- im Multidrop-Modus (Set Poll Address, siehe Seite 3-303)
- im Test-Modus

6 Loop test

Hiermit können Sie gezielt Stromwerte am Stromausgang ausgeben. Dadurch lässt sich die korrekte Funktion des Stromausgangs sowie der Anzeigewert im Prozessleitsystem überprüfen. Geben Sie den gewünschten Wert in mA ein.

2.37 Plateau

Menüpfad: **Device Config** ▶ **Setup** ▶ **Service** ▶ **Plateau**.

Dieses Menü führt zur Plateaumessung und zur Anzeige der Plateauwerte.

1 Plateau Measurement

Führt zur Plateaumessung (Seite 3-310).

2 Plateau View

Ermöglicht die Darstellung der Plateaudaten in einer Tabelle oder als Plateau Kurve.

3 Plateau Information

Allgemeine Informationen zur Plateaumessung.

2.38 Plateau Measurement

Menüpfad: Device Config ▶ Setup ▶ Service ▶ Plateau ▶ Plateau Measurement.

Wie ein Plateaumessung durchgeführt wird beschreibt das Kapitel 6.1, Seite 3-345.

▶ Geben Sie hier den HV-Startwert in Volt ein.

► Geben Sie hier den HV-Stoppwert (Endwert der Messung) in Volt ein.

Geben Sie hier die Schrittweite in Volt ein, die zwischen den Messpunkten liegen soll.

Geben Sie hier die Zeitdauer ein, über die jeder Messpunkt gemittelt werden soll, z.B. 20s.

Der Menüpunkt bietet Ihnen folgende Möglichkeiten:

AUTO

Aktiviert die automatische HV-Regelung. Stellen Sie diese Betriebsart für den normalen Messmodus ein. Damit wird ein temperaturstabiles Arbeiten des Detektors ermöglicht.

MANUAL

Diese Einstellung dient in der Regel nur zu Testzwecken. Sie können hier z.B. behelfsmäßig den Arbeitspunkt des Detektors festlegen. Die angegebene Spannung muss aber im Plateau liegen.

Sobald Sie **MANUAL** aktivieren, wird die automatische HV-Regelung abgeschaltet. Die HV wird dann auf den Wert gesetzt, der bei HV Manual angegeben ist.

• PLATEAU

Startet die Plateaumessung. Der Messmodus wird verlassen und das Plateau des Multipliers, der im Detektor eingesetzt ist, wird gemessen. Die Messung erfolgt mit den Einstellungen, die in den Menüpunkten HV Start, HV Stop, HV Step und Meas. Time gemacht wurden.

Am Ende der Plateau-Messung schaltet der Detektor selbstständig wieder auf **HV Mode**: **AUTO** bzw. **MANUAL** zurück, je nachdem, welcher Modus zuletzt eingestellt war.

Anzeige der aktuellen HV (Hochspannung) am Photomultiplier. Falls der **HV Mode** auf **AUTO** gesetzt ist (Normalbetrieb), muss sich der Wert in **HV Live**, über mehrere Sekunden betrachtet, ändern.

Anzeige der aktuellen Zählrate.

1 HV Start

2 HV Stop

3 HV Step

4 Meas. Time

5 HV Mode

6 HV Live

7 Cps Live

54733-20BA1S 05.2025

3 – 310

2.39 Plateau View

Menüpfad: Device Config ▶ Setup ▶ Service ▶ Plateau ▶ Plateau View.

Dieses Menü ermöglicht die Darstellung der Plateaudaten in einer Tabelle oder als Plateau Kurve.

1 Refresh Plateau Aktualisiert die Plateautabelle durch Laden der Daten aus dem

Detektor.

2 Plateau Table Zeigt die Plateau-Messpunkte in einer Tabelle.

3 Plateau Curve Zeigt die Plateau-Messpunkte in einer Kurve.

2.40 Plateau Information

Menüpfad: Device Config ► Setup ► Service ► Plateau ► Plateau Information.

Allgemeine Informationen zur Plateaumessung.

1 Plateau Date Zeigt das Datum der letzten Plateauaufnahme an.

Keine Plateauaufzeichnung ist vorhanden, wenn das

Datum 01/01/2000 angezeigt wird.

2 Plateau Tab Entries Zeigt die Anzahl der Messpunkte für die Plateaumessung an.

2.41 Meas Parameter

Menüpfad: **Device Config** ▶ **Meas Parameter**.

Diese Menüs zeigen Ihnen die aktuell gültigen Messparameter an.

1 Meas Data Führt zum Menü für die Anzeige der aktuellen Messwerte (**Seite 3-**

312).

2 Meas Settings Führt zum Menü für die Anzeige wichtiger Detektoreinstellungen

(Seite 3-313).

3 Build Up Alarm Führt zum Menü für die Anzeige der Daten für den Build-up-Alarm

(Seite 3-314).

2.42 Meas Data

Menüpfad: **Device Config** ▶ **Meas Parameter** ▶ **Meas Data**.

Das Menü zeigt die gemessenen und die automatisch ermittelten Messeinstellungen (Parameter) an. Die Zählraten werden täglich um 09:01h durch die automatische Zerfallskompensation korrigiert, die Werte werden dadurch im Laufe einiger Wochen kleiner.

1 Background Zeigt den Kalibrierwert der Hintergrundstrahlung.

2 Lower Point Anzeige der Zählrate des unteren Kalibrierpunkts (**Lower Point**).

3 Upper Point Anzeige der Zählrate des oberen Kalibrierpunkts (Upper Point).

4 Time Const Zeigt die Zeitkonstante mit der der Messwert gemittelt wird.

Um zu verhindern, dass eine für Ihre Anforderungen an die Messung maximal zulässige Zeitkonstante überschritten wird, können Sie im Menü **Source Exchange** einen Maximalwert für die Zeitkonstante

festlegen, siehe Seite 3-281.

5 Threshold Zeigt den mittleren Schaltpunkt in %, an dem Alarm ausgegeben

wird. Bitte beachten Sie, dass die Hysterese symmetrisch um den Schaltpunkt liegt, was bei einem Grenzschalter eine mögliche Rückschaltung bei statistischen oder prozessbedingten Füllstands-

schwankungen minimiert.

6 Threshold Cps Zeigt den mittleren Schaltpunkt in Cps an dem Alarm ausgegeben

wird. Er errechnet sich aus dem Grenzwert in %.

7 Hysteresis Zeigt die Hysterese die symmetrisch um den Schaltpunkt liegt.

2.43 Meas Settings

Menüpfad: **Device Config** ▶ **Meas Parameter** ▶ **Meas Settings**.

1 Nuclide

Anzeige des Isotops (Nuklids), das bei der Kalibrierung gewählt wurde. Es muss mit dem Strahler, der an der Messstelle verwendet wird, übereinstimmen.

- Co-60
- Cs-137
- USER DEFINED

Die Angabe steuert die automatische Zerfallskompensation und muss mit der Angabe auf dem Typenschild der Abschirmung übereinstimmen.

2 Switch Function

Zeigt an, ob der Grenzschalter als *High Alarm* oder als *Low Alarm* verwendet wird. Die Schaltrichtung beeinflusst die Safe Fail-Funktion des digitalen Ausgangs (Open Collector).

MAX

Der Alarm wird bei Überschreitung der Schaltschwelle (Alarmschwelle für den Füllstand) ausgelöst (High Alarm).

MIN

Der Alarm wird bei Unterschreitung der Schaltschwelle (Alarmschwelle für den Füllstand) ausgelöst (Low Alarm).

MAX + BUILD UP

Der Alarm wird bei Überschreitung der Schaltschwelle ausgelöst (High Alarm). Zusätzlich erfolgt eine Überwachung, die einen Alarm bei Wandanbackungen (Build-up) ausgibt.

3 Evaluation Mode

Zeigt an, ob die Einstellungen für **Time Const** (Zeitkonstante), **Threshold** (Schaltschwelle) und **Hysteresis** (Hysterese) automatisch berechnet und laufend angepasst werden (Werkseinstellung), oder manuell auf einen festen Wert gesetzt wurden:

AUTO SET

Dies ist die Werkseinstellung. Sie stellt sicher, dass die oben aufgeführten Parameter laufend optimiert und angepasst werden und bei jeder Zerfallskompensation auch überprüft werden.

MANUAL SET

Manuelle Einstellung. Fehlerhafte Eingaben, die die Schaltsicherheit gefährden, können in diesem Modus nur teilweise abgefangen werden.

4 Cal Method

Zeigt an, welche Art der Kalibrierung zuletzt durchgeführt wurde:

- 1-POINT
- 2-POINT

2.44 Build Up Alarm

Menüpfad: **Device Config** ▶ **Meas Parameter** ▶ **Build Up Alarm**.

Diese Funktion wird zur anforderungsorientierten Wartung eingesetzt und gilt nur für Max-Schalter-Anwendungen. Sie erkennt frühzeitig Wandanbackungen oder Gasdichteerhöhungen, die die Grenzschalterfunktion beeinträchtigen.

Zu diesem Zweck werden im Hintergrund zusätzliche Schwellen ermittelt. Hält der Füllstand keinen ausreichenden Abstand zu diesen Schwellen, dann wird eine Warnung ausgegeben, die als Alarm über den digitalen Ausgang gemeldet wird. Der digitale Ausgang ist hierzu entsprechend einzustellen.

Anzeige, ob die Funktion Wandanbackungsalarm aktiviert oder deaktiviert ist.

Anzeige des **BU Levels** in %. Der **BU Level** wird parallel zum normalen Füllstand mit einer höheren Zeitkonstanten berechnet.

Anzeige des Grenzwertes für den Wandanbackungsalarm in %. Der Grenzwert wird automatisch berechnet.

In folgenden Fällen wird Build-up-Alarm ausgelöst:

- Wenn der Füllstand Leer ist und BU Threshold überschritten wird.
- 2. Wenn der Füllstand von Voll auf Leer geht und die Schaltschwelle nicht unterschritten wird.

Anzeige der Hysterese für BU Threshold in %.

Anzeige der Zeitkonstanten, mit der der Messwert bei **Bu Level** gemittelt wird. Die Zeitkonstante für den Wandanbackungsalarm wird automatisch ermittelt.

Anzeige der Reaktionszeit in Sekunden, bis ein Build-up-Alarm ausgegeben wird. Die Zeitdauer wird über **Device Config** ▶ **Setup** ▶ **Signal Condition** ▶ **Built Up Alarm** gesetzt, siehe **Seite 3-282**.

1 BU Alarm

2 BU Level

3 BU Threshold

4 BU Hysteresis

5 BU Time Constant

6 BU Delay Time

1 Password

2.45 Access

Menüpfad: **Device Config** ▶ **Access**.

Dieses Menü ermöglicht Ihnen die Passworteingabe, die Sperrung gegen Konfigurationsänderungen und die Aktivierung des Safety-Modus.

Geben Sie hier ein Passwort ein, wenn Sie den Detektor gegen unerwünschten Zugriff verriegeln möchten. Durch das Verriegeln wird der Zugriff auf einstellbare Parameter gesperrt. Um die Verriegelung wieder aufzuheben, müssen Sie das Passwort erneut eingeben.

Das Passwort ist frei wählbar und darf aus maximal 8 Zeichen oder Ziffern bestehen.

Eventuell aktivierte Testeinstellungen werden beim Verriegeln zurückgesetzt.

Notieren Sie sich Ihr Passwort, um den Detektor später wieder entriegeln zu können. Falls Sie Ihr Passwort verlieren, müssen Sie sich mit BERTHOLD TECHNOLOGIES in Verbindung setzen.

2 Write Protect

Zeigt an, ob der Detektor gegen Änderungen der Einstellungen (Parameter) verriegelt ist.

NO

Der Detektor ist entriegelt, d.h., die Einstellungen können verändert werden.

YES

Der Detektor ist verriegelt, d.h., es kann keine der Einstellungen verändert werden, die Anzeige ist jedoch weiterhin möglich.

3 Safety Mode

Zeigt an, ob der Safety-Modus aktiviert ist:

Der Safety-Modus ist aktiviert.

OFF

Der Safety-Modus ist deaktiviert.

4 Safety ON

Für sicherheitsrelevante Anwendungen ist es erforderlich, den Safety-Modus zu aktivieren.

WICHTIG

Ein Aktivieren des Safety Mode macht aus einem Detektor nicht automatisch ein Gerät das in einem SIL-Sicherheitskreis verwendet werden kann. Nur ein mit SIL auf dem Typenschild gekennzeichnetem System kann mit den SIL-Angaben im Sicherheitshandbuch, in einem Sicherheitskreis verwendet werden. SIL-zertifizierte Detektoren sind im LB-Nummernschlüssel auf dem Typenschild mit einem "S" gekennzeichnet: LB 480-xx-xx-xx-xx-x**S**x-x.

Im Safety-Modus werden sicherheitseinschränkende Werte auf eine sicherheitsverträgliche Einstellung gesetzt. Zudem werden Sie aufgefordert, den Detektor mit einem Passwort zu verriegeln.

Folgende Einstellungen müssen gesetzt sein um den Safety Modus aktivieren zu können:

Stromausgangsüberwachung: Current Loop Monitoring = ENABLED

Hochspannungskontrolle: HV Mode = AUTO

alle Testeinstellungen: **Test Settings** = **NORMAL**

Digitale Eingänge: **Digital In Function** = **OFF**

Multidrop: **Poll Addr** = **0**

Beim Aktivieren vom Safety Modus wird der Parameter Error Handling automatisch auf **SENSITIVE** gesetzt.

i wichtig

HV Default muss den richtigen Wert (Arbeitspunkt) besitzen.

Sollten Sie den werksseitig eingestellten HV-Wert verändert haben, müssen Sie ihn erneut bestimmen. Ermitteln Sie hierzu den Arbeitspunkt und tragen Sie diesen Wert bei HV Default ein (Device Config ▶ Setup ▶ Sensor Configuration ▶ Sensor Settings ▶ HV Default, Seite 3-275). Siehe auch Kapitel 6.1, "Plateaumessung durchführen", Seite 3-345.

Der Arbeitspunkt liegt bei neuen Detektoren in der Regel zwischen 400 und 900V. Sollte sich bei Ihnen ein anderer Wert ergeben, dann halten Sie bitte Rücksprache mit BERTHOLD TECHNOLOGIES oder der für Sie zuständigen Vertretung.

5 Safety OFF

Deaktiviert den Safety-Modus. Zum Deaktivieren benötigen Sie das Passwort.

Wenn Sie den Safety-Modus deaktivieren, werden folgende Einstellungen automatisch vorgenommen:

- der Detektor wird entriegelt, d.h., Write Protect wird auf OFF gesetzt
- Error Handling wird auf NORMAL gesetzt (siehe Seite 3-**277**)

6 Lock Device Status

Anzeige, ob der Detektor für Zugriffe durch andere Teilnehmer auf der $\mathsf{HART}^{\circledR}$ -Schnittstelle freigeschaltet oder gesperrt ist.

7 Lock/Unlock Device

Verriegelt bzw. entriegelt den Detektor gegen Zugriffe durch andere Teilnehmer auf der HART®-Schnittstelle.

2.46 Identification

Menüpfad: **Device Config** ▶ **Identification**.

Dieses Menü zeigt verschiedene Detektorparameter an, z.B. Modell, Device-ID, Software- und Hardware-Revision.

1 Location

Führt zum Menü mit Informationen über die Messstelle (**Seite 3-317**).

2 Device Information

Führt zum Menü mit Informationen über den Detektor (**Seite 3-318**).

3 Device Revision

Führt zum Menü mit der Anzeige der Revisionen von Hard- und Software (*Seite 3-318*).

2.47 Location

Menüpfad: **Device Config** ▶ **Identification** ▶ **Location**.

Dieses Menü zeigt Ihnen Informationen über die Messstelle an.

1 Tag

Anzeige der Messstellen-Nummer. Sie können die Angabe auch verändern, es sind beliebige Texte möglich. Maximal 8 Zeichen.

2 Long tag

Anzeige der Messstellen-Nummer. Sie können die Angabe auch verändern, es sind beliebige Texte möglich. Maximal 32 Zeichen.

3 Descriptor

Anzeige einer Messstellenbeschreibung. Sie können die Angabe auch verändern, es sind beliebige Texte möglich.

4 Message

2.48 Device Information

Menüpfad: **Device Config** ► **Identification** ► **Device Information**.

Dieses Menü zeigt Ihnen Informationen über den Detektor an.

1 Device Type Anzeige der Modellbezeichnung der SENSseries. Diese Angabe kann

nicht geändert werden.

2 Device IdIdentifikationsnummer des Detektors. Sie zeigt die spezifische HART®-Gerätenummer an. Diese Angabe wird von BERTHOLD

TECHNOLOGIES vorgegeben und kann nicht geändert werden.

3 Manufacturer Anzeige des Herstellernamens. Diese Angabe kann nicht geändert

werden.

4 Final Assembly Num Nummer zur Identifikation des Detektors.

2.49 Device Revision

Menüpfad: **Device Config** ▶ **Identification** ▶ **Device Revision**.

Dieses Menü zeigt Ihnen die Revisionen von Hard- und Software an.

1 Universal Rev Anzeige der Revision des spezifischen universellen HART®-Befehls-

satzes.

Für die SENSseries sind die Universal Commands für HART $^{\circledR}$ 6 oder höher erforderlich. Dazu muss der 375 Field Communicator der Emerson Process Management GmbH & Co. OHG oder ein kompatibles Modell verwendet werden, das Enhancements unterstützt.

Hat der Kommunikator eine niedrigere Version als ${\sf HART}^{\it \&}$ 6, dann wird lediglich die sogenannte *Generic DD* gestartet. Die Generic DD verfügt zwar über einen ${\sf HART}^{\it \&}$ -spezifischen Befehlssatz, dieser

reicht aber für die SENSseries nicht aus.

2 Field Dev Rev

Anzeige der Kompatibilität des Detektors zur DD auf dem Kommunikator. Diese Nummer z. B. 2. zeigt an. dass eine DD-Revision 2.

nikator. Diese Nummer, z.B. 2, zeigt an, dass eine DD-Revision 2 notwendig ist, um den vollen Funktionsumfang des Detektors zu

unterstützen. Siehe hierzu Kapitel 7.6, Seite 3-357.

3 Software Rev Anzeige der Software-Revision (embedded Software). Diese

Angabe hängt von der aktuell installierten Firmware ab und kann

nicht geändert werden.

4 SW Revision Softwarerevison mit Darstellung nach NAMUR .

5 SW Revision Date Datum der Softwarerevision.

4 Hardware Rev Anzeige der Hardware-Revision. Diese Angabe wird von BERTHOLD

TECHNOLOGIES vorgegeben und kann nicht geändert werden.

3 – 318 54733-20BA1S 05.2025

2.50 Diagnostic

Dieses Menü gibt Ihnen Status- und Fehlerinformationen und ermöglicht Ihnen die Anzeige der Protokolle für Fehler und Einstellungsänderungen (Parameteränderungen).

Eine Liste möglicher Fehlerursachen und Maßnahmen zur Fehlerbeseitigung finden Sie in Kapitel 8 ab Seite 3-361.

1 Operating Status

Führt zum Menü für die Anzeige des Betriebsstatus (Seite 3-315).

2 Log

Führt zum Menü für die Anzeige der Protokolle für Fehler und Einstellungsänderungen (Seite 3-321).

3 Safety

Der Status aller hier aufgeführten Einstellungen muss OFF sein, wenn Sie Safety ON aktiviert haben (Device Config ▶ Access, Seite 3-315).

4 Error Status 100 ... 907

Hier können Sie den Status aller im Detektor möglichen Fehlermeldungen prüfen.

- **OFF** = fehlerfrei
- **ON** = ein Fehler steht an

2.51 **Operating Status**

Menüpfad: **Diagnostic** ▶ **Operating Status**.

1 Device Status

Anzeige des aktuellen Gerätestatus (Standard HART®-Befehl).

2 Ext dev status

Führt zur Anzeige des erweiterten Gerätestatus (Standard HART®-Befehl, Seite 3-320).

3 Device Variables Status

Führt zum Menü für den Status der Detektorvariablen (Standard HART®-Befehl, **Seite 3-320**).

4 Config Change Status

Führt zum Menü mit der Info zu Parameteränderungen (Seite 3-**321**).

5 Lock Dev Status

Zeigt an, in wieweit das Gerät gegenüber Zugriffen von anderen Geräten auf die HART®-Schnittstelle gesperrt ist.

- Device is Locked
- Lock is Permanent
- Locked by Primary Master

6 Error Status

Führt zum Menü in dem der Betriebszustand der Messung angezeigt wird (Seite 3-322).

2.52 Ext dev status

Menüpfad: Diagnostic ➤ Operating Status ➤ Ext dev status.

Anzeige des aktuellen erweiterten Gerätestatus (Standard HART®-Befehl):

- Maintenance required

Der Extended "Maintenance Required" wird nicht genutzt.

- Device variable alert

Dieser Status wird signalisiert, wenn eine der folgenden Bedingungen zutrifft:

- Primary Variable Out Of Limits
- Non-Primary Variable Out Of Limits
- Process Data Status¹ einer Device-Variablen ist nicht im Status GOOD
- Limit Status¹ einer Device-Variablen ist nicht im Status NOT LIMITED

- Critical Power Failure

Nicht verwendet. (Nur bei akku- oder batteriebetriebenen Geräten anwendbar.)

2.53 Device Variables Status

Menüpfad: Diagnostic ➤ Operating Status ➤ Device Variables Status.

Anzeige der Qualität der Hauptvariablen (Standard HART®-Befehl).

Anzeige, ob die Limits der Hauptvariablen erreicht wurden (Standard $\mathsf{HART}^{\$}\text{-Befehl}).$

2 Level Limit Status

1. Process Data Status und Limit Status sind im Device Variable Status enthalten

54733-20BA1S 3 - 320 05.2025

¹ Level Data Quality

2.54 Config Change Status

Menüpfad: Diagnostic ▶ Operating Status ▶ Config Change Status.

1 Modification Counter

Zeigt die Anzahl der Parameteränderungen, die seit dem letzten **Factory Reset** vorgenommen wurden.

2 Reset Modification Flag

Setzt das Modification Flag unter **Device Status** zurück.

2.55 Lock Device Status

Menüpfad: Diagnostic ➤ Operating Status ➤ Lock Dev Status.

Zeigt an, in wieweit das Gerät gegenüber Zugriffen von anderen Geräten auf die HART®-Schnittstelle gesperrt ist.

- Device is Locked
- Lock is Permanent
- Locked by Primary Master

2.56 Error Status

Menüpfad: **Diagnostic** ▶ **Operating Status** ▶ **Error Status**.

1 Meas Setup Status

Anzeige des Status der Kalibrierparameter. Nach jeder Zerfallskompensation (um 09:01h) und nach jeder Datumsänderung wird der Status aktualisiert. Er informiert darüber, ob die Messung sicher arbeitet oder ob durch die aktuelle Einstellung Fehlschaltungen möglich sind. Es wird eine der folgende Statusmeldungen angezeigt:

- **0-OK**

Die aktuelle Kalibrierung ist in Ordnung.

- 1-ERROR BACKGROUND

Die Zählrate für die Hintergrundstrahlung (Nulleffekt, Background) ist höher als die für die Kalibrierpunkte für Voll oder Leer (Lower Cal Pt-Empty oder Upper Cal Pt-Full).

- 2-ERROR CALIBRATION POINT

Die Leerzählrate ist niedriger als die Vollzählrate (Lower Cal Pt-Empty < Upper Cal Pt-Full).

- 3-ERROR THRESHOLD / TIME CONSTANT

Die Schaltschwelle (**Threshold**) liegt zu nahe an einem der Kalibrierpunkte für Leer (**Lower Cal Pt-Empty**) oder Voll (**Upper Cal Pt-Full**) oder die Zeitkonstante wurde bei der manuellen Kalibrierung zu klein gewählt. Der Fehler tritt auch auf, wenn die Zeitkonstante 999s überschreitet.

4-ERROR TC MAX

Die Zeitkonstante (**Time Constant**) hat einen höheren Wert als die maximale Zeitkonstante (**Max Time Constant**, **Seite 3-281**).

- 5-ERROR BU TC

Die Zeitkonstante für den Build-up-Alarm liegt über 14.400 Sekunden. Dies liegt entweder daran, dass der Unterschied zwischen Leerzählrate und Vollzählrate zu gering ist (Lower Cal Pt-Empty ≈ Upper Cal Pt-Full) oder dass die Schaltschwelle zu nahe an einem der Kalibrierpunkte für Leer (Lower Cal Pt-Empty) oder Voll (Upper Cal Pt-Full) liegt.

- 6-DATE ERROR

Ein Datum steht noch auf dem Standardwert 1.1.2000. Bei **Calibrate** den Parameter **Date** überprüfen. Bei **Restore** das Datum in **Restore Date** überprüfen.

- 7-CHECK ERROR

Der Status der Kalibrierparameter konnte nicht vollständig überprüft werden. Wiederholen Sie in diesem Fall die Kalibrierung. Tritt der Fehler erneut auf, so ist der Detektor, zumindest aber dessen Elektronik zu tauschen.

2 Operating Mode

Anzeige des Betriebszustands der Messung. Es wird eine der folgende Statusmeldungen angezeigt:

- RUN

Die Messung befindet sich im normalen Messbetrieb.

- WARNING

Es steht eine Warnmeldung der Fehlerkategorie **2** an, die folgenden Schritte werden ausgeführt:

- Eintrag im Error Log (der Fehler wird im Fehlerspeicher abgelegt)
- der Fehler wird digital über HART[®] gemeldet
- der Fehler wird binär über den digitalen Ausgang (Digital Out) gemeldet, sofern dieser auf WARNING + ERROR gesetzt ist (siehe Kapitel 2.27, Seite 3-299)

Sofern der Fehler nicht mehr bei **Active Error** angezeigt wird, können Sie ihn im Fehlerprotokoll nachschauen (**Device Config** ▶ **Diagnostic** ▶ **Log**, **Seite 3-321**). Eine Liste möglicher Fehlerursachen und Maßnahmen zur Fehlerbeseitigung finden Sie in *Kapitel* 8 ab *Seite* **3-361**.

- ERROR

Es steht ein Fehler der Fehlerkategorie **1** an, die folgenden Schritte werden ausgeführt:

- Eintrag im Error Log (der Fehler wird im Fehlerspeicher abgelegt)
- der Fehler wird digital über HART[®] gemeldet
- der Fehler wird binär über den digitalen Ausgang (Digital Out) gemeldet, sofern dieser auf WARNING + ERROR gesetzt ist (siehe Kapitel 2.27, Seite 3-299)
- der Fehlerstrom geht auf >21mA.

Sofern der Fehler nicht mehr bei **Active Error** angezeigt wird, können Sie ihn im Fehlerprotokoll nachschauen (**Device Config** ▶ **Diagnostic** ▶ **Log**, **Seite 3-321**). Eine Liste möglicher Fehlerursachen und Maßnahmen zur Fehlerbeseitigung finden Sie in *Kapitel* 8 ab *Seite* **3-361**.

- SHUTDOWN

Es steht ein schwerwiegender Fehler der Fehlerkategorie ${\bf 0}$ an, die folgenden Schritte werden ausgeführt:

- Eintrag im Error Log (der Fehler wird im Fehlerspeicher abgelegt)
- der Fehler wird digital über HART[®] gemeldet
- der Fehler wird binär über den digitalen Ausgang (Digital Out) gemeldet, sofern dieser auf WARNING + ERROR gesetzt ist (siehe Kapitel 2.27, Seite 3-299)
- der Fehlerstrom geht auf >21mA
- die Messung wird abgebrochen

Der Fehler bleibt anstehen bis er behoben ist und ein Neustart oder Software Reset durchgeführt wurde. Verschwindet der Fehler nicht nach einem Neustart (Aus- und wieder Einschalten der Stromversorgung oder Software-Reset, **Seite 3-304**), dann muss der Detektor getauscht werden.

- HOLD

Die Messung ist im Haltemodus, d.h., der Messwert und das Stromausgangssignal sind eingefroren. Dieser Zustand kann unter folgenden Bedingungen eintreten:

- die Plateaumessung läuft
- es wird Störstrahlung erkannt
- der digitale Eingang (Option) ist kurz geschlossen

- TEST

Im Menü **Service** ▶ **Test** (**Seite 3-306**) wurde ein Testwert aktiviert.

3 Error Code

Zeigt an ob eine Fehlermeldung ansteht.

Steht kein Fehler an, dann wird hier "0" angezeigt.

Eine Fehlermeldung wird mit einer dreistelligen Nummer angezeigt. Die Fehlerursache und die Fehlerbehebung entnehmen sie *Kapitel 8, Fehlerbehandlung*.

4 Acknowledge Error

Quittiert den aktuell anstehenden Fehler.

Band 3 Menüstruktur

2.57 Log

Dieses Menü gibt Ihnen Auskunft über die Historie der Fehlermeldungen und der Parameteränderungen. Es können bis zu 25 Ereignisse gespeichert werden.

1 Error Log Führt zum Menü für die Anzeige der aufgetretenen Fehler.

Führt zum Menü für die Anzeige der Historie für die vorgenommenen Einstellungen.

2.58 Error Log

Menüpfad: **Diagnostic** ▶ **Log** ▶ **Error Log**.

Aktualisieren Sie das Fehlerprotokoll mit **Refresh Error Log**, bevor sie einen der folgenden Menüpunkte anwählen. Sie bekommen sonst evtl. keine oder nur alte Einträge angezeigt.

Eine Liste möglicher Fehlerursachen und Maßnahmen zur Fehlerbeseitigung finden Sie in *Kapitel 8* ab *Seite 3-361*.

1 Refresh Error Log Aktualisiert die Einträge in Error Log Table.

2 Error Log Table

In einer Tabelle werden die letzten 25 Fehler angezeigt. Die Tabelle enthält den Fehlercode und den Zeitpunkt, an dem der Fehler aufgetreten ist. Voraussetzung dafür ist, dass Datum und Uhrzeit rich-

tig eingestellt waren.

3 Reset Error Log Löscht alle Einträge im Error Log.

4 Error Code Zeigt an ob eine Fehlermeldung ansteht.

Steht kein Fehler an, dann wird hier "0" angezeigt.

Eine Fehlermeldung wird mit einer dreistelligen Nummer angezeigt. Die Fehlerursache und die Fehlerbehebung entnehmen sie

Kapitel 8, Fehlerbehandlung.

5 Acknowledge Error Quittiert den aktuell anstehenden Fehler.

2 Modification Log

2.59 Modification Log

Menüpfad: **Device Config** ▶ **Diagnostic** ▶ **Log** ▶ **Modification Log**.

Aktualisieren Sie das Protokoll der Einstellungsänderungen mit **Refresh Error Log**, bevor sie einen der folgenden Menüpunkte anwählen. Sie bekommen sonst evtl. keine oder nur alte Einträge angezeigt.

1 Refresh Modification Log

Aktualisiert das Protokoll für Einstellungsänderungen.

2 Modification Log Table

In einer Tabelle werden die letzten 25 Einstellungsänderungen angezeigt. Die Tabelle enthält den alten und den neuen Parameterwert und den Zeitpunkt, an dem die Änderung durchgeführt wurde. Voraussetzung dafür ist, dass Datum und Uhrzeit richtig eingestellt waren.

3 Reset Modification Log

Löscht alle Einträge im Modification Log.

54733-20BA1S 05.2025 3

Inbetriebnahme über HART®-Kommunikator

Das Messsystem SENSseries LB 480 ist kompatibel mit dem 375 Field Communicator (HART $^{\$}$ -Kommunikator, HART = Highway Addressable Remote Transducer) der Firma Emerson Process Management GmbH & Co. OHG. Sie können aber auch andere HART $^{\$}$ -kompatible Kommunikatoren verwenden, die Enhancements unterstützen. Der HART $^{\$}$ -Kommunikator Model 275 von Emerson Process Management GmbH & Co. OHG kann *nicht* verwendet werden.

Stellen Sie vor der Inbetriebnahme sicher, dass

- der Detektor nicht beschädigt ist,
- der Detektor vorschriftsmäßig installiert ist,
- der Anschluss ordnungsgemäß durchgeführt wurde,
- die Kabel und Leitungen ordnungsgemäß eingeführt sind,
- nicht verwendete Leitungseinführungen mit gemäß Richtlinie 2014/34/EU bescheinigten Stopfen abgedichtet sind,
- der Gehäusedeckel fest angezogen ist,
- die Blindstopfen und die Kabelverschraubungen bzw. die Conduits fest angezogen sind.

Die Inbetriebnahme des Messsystems kann entweder über den $HART^{@}$ -Kommunikator oder über einen PC und die Software SIMATIC PDM erfolgen.

Der prinzipielle Ablauf der Inbetriebnahme ist in beiden Varianten nahezu identisch. Der Unterschied liegt lediglich in der Schnittstelle, über die mit dem Messsystem kommuniziert wird.

Dieses Kapitel beschreibt die Inbetriebnahme des Messsystems über den $HART^{®}$ -Kommunikator. Die Kenntnis der Funktionalität des verwendeten $HART^{®}$ -Kommunikators wird dabei vorausgesetzt.

3.1 Schritte für die Inbetriebnahme

Schritt	Tätigkeit	Seite
1	Überprüfen, ob die Device Description auf dem HART [®] -Kommunikator installiert ist (siehe Anleitung HART [®] -Kommunikator), ggf. vom Hersteller installieren lassen	I
2	HART®-Kommunikator anschließen	3-250
3	HART [®] -Kommunikator einschalten (siehe Anleitung HART [®] -Kommunikator)	-
4	Messsystem kalibrieren	3-331
5	Inbetriebnahmeprotokoll erstellen	3-373

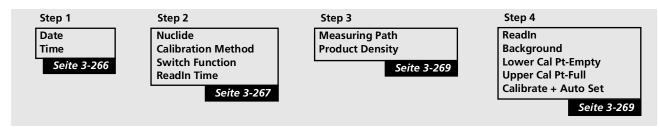
4

Voraussetzungen

Kurzanleitung für die Kalibrierung

- Der Detektor ist installiert und wird vom Netz versorgt.
- Die Werkseinstellung der Parameter wurde bisher noch nicht geändert. Ansonsten einen Factory Reset durchführen (siehe Kapitel 5.1.1).
- Dem Anwender ist die prinzipielle Kalibrierung einer radiometrischen Messung bekannt.
- Die Kommunikation mit dem HART®-Kommunikator ist aufgebaut.

Die folgende Kalibrierung basiert auf einer Einpunkt-Kalibrierung, bei der lediglich ein Leerabgleich erforderlich ist.



Tipp

Stellen Sie Datum und Uhrzeit, falls die Fehlermeldung 105 angezeigt wird.

Menüpunkt Quick Start anwählen: Device Config ► Setup ► QuickStart.

QuickStart Menü

Step 1 - Date/Time

- Prüfen bzw. aktualisieren Sie das Datum.
- Prüfen bzw. aktualisieren Sie die Uhrzeit.

Step 2 - Setup

- Wählen Sie Nuclide aus: Cs-137 oder Co-60 (siehe Typenschild der Strahlerabschirmung).
- Wählen Sie Calibration Method 1-POINT aus.
- ▶ Wählen Sie **Switch Function** *MAX* oder *MIN* aus.

Step 3 - Product Conditions

- Measuring Path: Geben Sie den Messweg im Produkt ein, üblicherweise der Innendurchmesser des Behälters.
- Product Density: Geben Sie das Schüttgewicht des Produktes ein, verwenden Sie bei schwankendem Schüttgewicht den kleinsten Wert.

Step 4 - Calibration Points

Beim CrystalSENS können Sie den folgenden Punkt Background überspringen, es sei denn, die Messung ist sicherheitsrelevant.

Background

Strahlerabschirmung ist nicht an der Messtelle montiert, zumindest aber ausreichend abgeschirmt (siehe Kapitel 7.1, Seite 3-349).

Wählen Sie ReadIn BACKGROUND aus und warten Sie die Messzeit ab.

Leerabgleich

Strahler ist montiert und Strahlengang geöffnet (siehe Kapitel 7.2, Seite 3-351). Der Behälter ist leer bzw. der Füllstand unterhalb des Grenzwertes.

Wählen Sie ReadIn LOWER-PT aus und warten Sie die Messzeit ab.

Kalibrierung

► Wählen Sie Calibrate + Auto Set aus.

Es muss die Meldung **0-OK** angezeigt werden, korrigieren Sie andernfalls den Kalibrierfehler laut Fehlermeldung und wählen Sie erneut Calibrate + Auto Set aus.

Auf den folgenden Seiten finden sie die ausführliche Kalibrieranweisung.

Führen Sie nach einer Kalibrierung immer eine Testrechnung durch. Damit stellen Sie sicher, dass Ihre Kalibrierdaten plausibel sind und der Detektor richtig eingestellt ist (siehe Kapitel 2.35, Seite 3-306, Cps Average Mode und Cps Average Test).

> 54733-20BA1S 05.2025

Band 3 5 Kalibrieren

5

HINWEIS

Kalibrieren

Fehler in der Kalibrierung oder in der Parametereinstellung können zu falschen Messergebnissen führen. Dadurch könnte es gegebenenfalls zu Produktionsausfällen, oder zu einem Schaden in der Anlage kommen.

Zur Prüfung empfehlen wir deshalb die Testeinstellungen im Servicemenü zu verwenden um die Kalibrierpunkte zu simulieren.

Sofern machbar gibt Ihnen eine Testfahrt, möglichst unter Betriebsbedingungen, eine hohes Maß an Sicherheit zur Richtigkeit Ihrer Kalibrierung. Bei dieser Testfahrt ist der gesamte Messbereich zu durchfahren.

Grundsätzlich empfehlen wir Ihnen die Inbetriebnahme vom Service der Firma BERTHOLD TECHNOLOGIES durchführen zu lassen.

Voraussetzungen für die Kalibrierung mit dem HART®-Kommunikator

- Der Detektor ist korrekt montiert und wird vom Netz versorgt (siehe Band 2, Kapitel 2 und Kapitel 3).
- Der HART[®]-Kommunikator ist an der Stromschleife angeschlossen.

Kalibrierung vorbereiten

Für eine korrekte Kalibrierung des Messsystems müssen Sie sicherstellen, dass die Detektor- und Grundeinstellungen richtig sind.

► Schalten Sie den HART®-Kommunikator ein. Nach dem Einschalten erscheint das Start-Menü.

Über die *HOME*-Taste können Sie aus jeder Ebene wieder in das Start-Menü zurückspringen.

Sofern der Detektor bereits längere Zeit auf Lager lag, kann es sein, dass die interne Uhr nicht mehr das aktuelle Datum anzeigt. In diesem Fall erscheint die Fehlermeldung 105 Real time clock not valid. Aktualisieren sie Datum und Uhrzeit, um die Fehlermeldung zu quittieren (siehe Kapitel 2.13, Seite 3-272).

Wenn Sie sich sicher sind, dass die Detektor- und Grundkonfiguration korrekt sind, können Sie gleich mit der Kalibrierung des Messsystems in Kapitel 5.2 beginnen.

Ansonsten führen Sie folgende Schritte aus:

- Falls das Gerät noch mit dem Passwort verriegelt ist, heben Sie den Passwortschutz auf (siehe Seite 3-315).
- Setzen Sie den Detektor auf Werkseinstellungen zurück (siehe Seite 3-333)
- Gleichen Sie den Wert für HV-Default ab (siehe Seite 3-333). Dies ist in der Regel nicht notwendig, da der Detektor bereits im Werk abgeglichen wurde.

Band 3 5 Kalibrieren

5.1.1 SENSseries auf Werkseinstellungen zurücksetzen

Falls das Start-Menü nicht bereits angezeigt wird, verwenden Sie **HOME**, um in das Start-Menü zu gelangen.

- Wählen Sie Device Config ► Setup ► Service ► Reset Device an.
- ▶ Wählen Sie *FACTORY RESET* an und bestätigen Sie die folgende Sicherheitsabfrage.
 - Bei erfolgreichem Reset erscheint die Meldung Device is reset!
- ► Schalten Sie jetzt den HART®-Kommunikator AUS und wieder FTN.

Die Parameter im Detektor entsprechen jetzt wieder der Werkseinstellung (Auslieferungszustand).

5.1.2 HV-Default abgleichen

HV Default wurde bereits von BERTHOLD TECHNOLOGIES ermittelt und gesetzt. Weicht dieser Wert bei der *ersten Inbetriebnahme* um mehr als 5% von **HV Live** ab, dann müssen Sie **HV Default** neu abgleichen.

Der Abgleich von **HV Default** ist nur dann erfolgreich, wenn beim CrystalSENS die aktuelle Zählrate mindestens bei 300Ips liegt. Bei SuperSENS und UniSENS ist die Zählrate unerheblich.

Falls das Start-Menü nicht bereits angezeigt wird, verwenden Sie **HOME**, um in das Start-Menü zu gelangen.

- Wählen Sie Device Config ➤ Setup ➤ Sensor Configuration
 ▶ Plateau ➤ Sensor Settings an.
- Wählen Sie HV Mode AUTO, falls dies nicht bereits eingestellt ist.
- ▶ Speichern Sie die Änderungen mit **SEND** ab.
- ▶ Warten Sie, bis sich der HV-Wert (HV Live) eingeregelt hat. Dies dauert etwa 2 Minuten bei CrystalSENS und 30 Minuten bei SuperSENS und UniSENS.
- ▶ Lesen Sie den Wert **HV Live** ab.
- ► Tragen Sie den abgelesenen Wert bei HV Default ein.
- ▶ Speichern Sie die Änderungen mit **SEND** ab.

Der Abgleich des HV-Default-Wertes ist damit abgeschlossen.

5.1.3 Detektor Code

Stellen Sie den Detektorcode laut der Tabelle in *Band 2, Kapitel 1.6, "Detektorcodes"* ein.

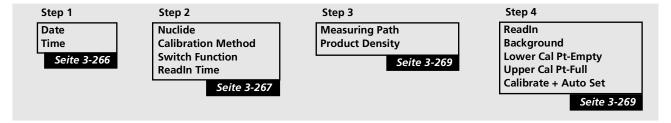
5 Kalibrieren Band 3

5.2 Kalibrierung mit Quick Start

In diesem Kapitel wird die Kalibrierung im **Quick Start** Menü ausführlich erläutert. Eine Kurzanleitung finden Sie in *Kapitel 4*, ab *Seite 3-329*.

Das **Quick Start** Menü ermöglicht eine Einpunkt-, oder Zweipunkt-Kalibrierung mit einem Leerabgleich, bzw. mit einem Leerund einem Vollabgleich.

Folgende Gründe könnten es notwendig machen dass Sie die Kalibrierung, anstatt im **Quick Start**, im Hauptmenü unter **Cal Parameter** durchführen müssen, z. B:


- weil im Betrieb der Behälter unter hohem Gasdruck steht, zur Kalibrierung dieser Gasdruck aber nicht zur Verfügung steht.
- weil Sie die Zeitkonstante und den Grenzwert manuell eingeben möchten und nicht automatisch berechnen lassen wollen.
- weil der Grenzwert bei einem Schüttgut bei einem bestimmten Schüttkegel-Durchmesser schalten soll.

Wir beraten Sie gerne wenn Zweifel an der richtigen Vorgehensweise bestehen.

Falls das Start-Menü nicht bereits angezeigt wird, verwenden Sie **HOME**, um in das Start-Menü zu gelangen.

▶ Wählen Sie **Device Config** ▶ **Setup** ▶ **Quick Start** an.

QuickStart Menü

Dieses Menü enthält vier Arbeitsschritte (**Step 1** bis **Step 4**) mit den entsprechenden Untermenüs. Gehen Sie die einzelnen Schritte Menüpunkt für Menüpunkt durch, dann ist Ihr Detektor danach für alle Einsätze unter Standardbedingungen fertig konfiguriert.

54733-20BA1S 3 - 334 05.2025

5.2.1 Step 1

► Geben Sie hier das aktuelle Datum (**Date**) und die Uhrzeit (**Time**) ein. Das Datum wird im Format MM/TT/JJJJ angegeben, die Zeit wird im Format hh:mm:ss angegeben.

Das korrekte Datum wird für die automatische Zerfallskompensation des Isotops benötigt. Da die Aktivität des Strahlers mit der Zeit nachlässt, werden die Kalibrierzählraten automatisch über das Datum kompensiert. Die Zerfallskompensation erfolgt täglich um 09:01 h. Zeitunterschiede haben keine Auswirkung auf die Korrektur der Aktivitätsabnahme. Die richtige Uhrzeit ist aber zur Überprüfung der Detektorfunktion hilfreich: Im Fehlerfall können Sie im Fehlerlog anhand von Datum und Uhrzeit feststellen, wann genau der Fehler aufgetreten ist.

5.2.2 Step 2

- Geben Sie hier das Isotop (Nuklid) an, das in Ihrem Strahler verwendet wird:
- Co-60
- Cs-137
- USER DEFINED

Die Angabe steuert die automatische Zerfallskompensation. Die richtige Eingabe ist auch bei einer Einpunktkalibrierung und bei der Gasdichtekompensation wichtig. Das verwendete Isotop können sie am Typenschild der Abschirmung ablesen und aus Ihren Lieferunterlagen ersehen. Die Eingabe *USER DEFINED* ermöglicht es Ihnen, ein beliebiges Isotop zu verwenden. In diesem Fall werden weitere Parameter abgefragt: geben Sie die Halbwertszeit unter Half Life Time und den Absorbtionskoeffizienten unter Absorption an.

Was passiert, wenn Sie das falsche Isotop ausgewählt haben?

Durch die falsche Zerfallskompensation kommt es erst nach einigen Wochen oder Monaten zu Fehlmessungen. Sofern Sie auch Werte für die Produkt- oder Gasdichte eingeben, werden dann auch falsche Schaltschwellen (Alarmschwellen für den Füllstand) berechnet. Bei einer Einpunktkalibrierung wird bei einer falschen Isotopenanwahl auch der Kalibrierpunkt für 100% falsch berechnet.

Nuclide

Kalibrieren Band

Calibration Method

Legen Sie hier die Art der Kalibrierung fest. Falls Sie im Zweifel über die geeignete Methode sind, lesen Sie Kapitel 5.2 durch. Sie können zwischen folgenden Kalibriermethoden auswählen:

1-POINT

Verwenden Sie die 1-Punkt-Kalibrierung nur, wenn ein Vollabgleich nicht möglich ist.

Bei dieser Methode ist ein Leerabgleich (Füllstand unterhalb der Überwachungshöhe) erforderlich. Anhand weiterer Eingaben wie Produktdichte und Messweg wird die Zählrate für den Vollabgleich (Füllstand oberhalb der Überwachungshöhe) dann automatisch ermittelt (berechnet).

2-POINT

Bei der Zweipunkt-Kalibrierung sind ein Leerabgleich (Füllstand unterhalb der Überwachungshöhe) und ein Vollabgleich (Füllstand oberhalb der Überwachungshöhe) erforderlich. Führen Sie Leer- und Vollabgleich in Step 4 durch.

Da der Vollabgleich tatsächlich gemessen und nicht nur errechnet wird, erreicht diese Einstellung eine bessere Anzeigegenauigkeit.

Switch Function

Legen Sie hier fest, ob der Grenzschalter als High Alarm oder als Low Alarm verwendet wird. Die Schaltrichtung beeinflusst die Safe Fail-Funktion des digitalen Ausgangs (Open Collector). Um die Warnmeldung zu erhalten, müssen Sie Meldungen über das HART®-Signal oder den digitalen Ausgang auswerten.

Sie haben folgende Einstellmöglichkeiten:

MAX

Der Alarm wird bei Überschreitung der Schaltschwelle (Alarmschwelle für den Füllstand) ausgelöst (High Alarm).

MIN

Der Alarm wird bei Unterschreitung der Schaltschwelle (Alarmschwelle für den Füllstand) ausgelöst (Low Alarm).

MAX + BUILD UP

Der Alarm wird bei Überschreitung der Schaltschwelle ausgelöst (High Alarm). Zusätzlich erfolgt eine Überwachung, die einen Alarm bei Wandanbackungen¹ (Build-up) ausgibt. Voraussetzung für eine korrekte Funktion ist, dass sowohl die Zählrate für Leer als auch die Zählrate für Voll gemessen wurde. Bei der Messung des Leerwertes muss sicher gestellt sein, dass keine Wandanbackungen vorhanden sind. Die Einstellungen zum Build-up-Alarm erfolgen nicht beim Quick Start, dies ist nur über Device Config ▶ Meas Parameter ▶ Build Up Alarm möglich (siehe Kapitel 2.44, Seite 3-314).

54733-20BA1S 3 – 336 05.2025

Die Funktion ermöglicht die frühzeitige Erkennung von Wandanbackungen, d.h., noch bevor die sichere Schaltfunktion nicht mehr gewährleistet ist. Die Funktion BUILD UP erhöht allerdings automatisch die Zeitkonstante und damit auch die Reaktionszeit.

Band 3 5 Kalibrieren

ReadIn Time

 Legen Sie hier fest, über welche Zeitdauer die Zählrate für den jeweiligen Kalibrierpunkt eingelesen werden soll.

Über diese Zeitdauer wird die statistische Schwankung der Zählrate gemittelt. Je länger sie ist, desto besser ist der Mittelwert. Eine Zeitdauer von 60 s (Werkeinstellung) ist in der Regel ausreichend.

5.2.3 Step 3

Dieser Schritt ist nur notwendig, wenn Sie in Schritt 2 (**Step 2**) die Einstellung **1-POINT** als **Calibration Method** ausgewählt haben. Fahren Sie andernfalls mit Schritt 4 (**Step 4**, *Seite 3-337*) fort.

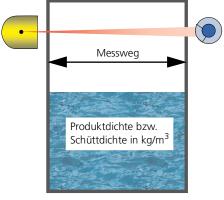


Bild 5-1 Messweg im Behälter

Measuring Path

Product Density

► Geben Sie den Messweg des Strahlenganges im Produkt, das gemessen werden soll, in mm ein. Im Regelfall entspricht dies dem Innendurchmesser des Behälters.

▶ Geben Sie bei Flüssigkeiten die Flüssigkeitsdichte, bei Schüttgütern die Schüttdichte des Produktes, das gemessen werden soll, in kg/m³ ein. Falls die Flüssigkeitsdichte bzw. die Schüttdichte nur ungefähr bekannt ist, geben Sie den niedrigsten anzunehmenden Wert ein.

5.2.4 Step 4

Mit **ReadIn** starten Sie das Einlesen der Zählraten. Während die Zählrate eingelesen wird, wird laufend der Mittelwert gebildet und angezeigt. Die Dauer des Einlesens legen Sie unter **ReadIn Time** (**Quick Start** ▶ **Step 2** ▶ **Setup**) fest.

Beim Einlesen der Zählraten wird die verbleibende Zeit (**Remaining Time**) bis zum Ende des Vorgangs angezeigt. Zum Schluss werden Sie aufgefordert, die ermittelte Zählrate mit **OK** zu bestätigen. Um den Einlesevorgang abzukürzen, können Sie jederzeit mit **OK** stoppen.

Unter **ReadIn** können folgende Kalibrierpunkte eingelesen werden:

- BACKGROUND
- LOWER-PT
- UPPER-PT

5 Kalibrieren Band 3

ReadIn

Background einlesen.

Vor der Kalibrierung müssen Sie die Zählrate der Hintergrundstrahlung (Background) ermitteln, um den Zerfall der Strahlungsquelle korrekt kompensieren zu können. Stellen Sie vor der Messung sicher, dass Sie keine Strahlung von der Strahlenquelle mitmessen. Weitere Informationen zur Hintergrundstrahlung finden Sie in *Kapitel 7.1*, *Seite 3-349*.

- ▶ Wählen Sie unter **ReadIn BACKGROUND** aus.
- ▶ Bestätigen Sie mit **OK**, sobald **Remaining Time** = 0s ist.

Ausführliche Informationen zum Nulleffekt finden Sie im Kapitel 7.1.

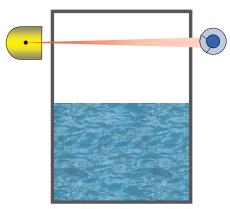


Bild 5-2 Füllstand unterhalb der Überwachungsgrenze

Für die nächste Messung muss der Füllstand im Behälter unterhalb der Überwachungshöhe sein oder der Behälter muss ganz leer sein. Während sie einlesen, darf der Füllstand nicht über die Schaltschwelle ansteigen und die Bedingungen im Behälter müssen soweit wie möglich den Bedingungen im Betrieb entsprechen. Sofern dies für Ihre Applikation zutrifft und den Strahlengang beeinflusst, betrifft dies z.B. die Gasdichte, einen evtl. vorhandenen Rührer oder Kühl-/Heizmantel (Temperatur, Füllung).

- ▶ Wählen Sie unter **ReadIn** *LOWER-PT* aus.
- ▶ Bestätigen Sie mit **OK**, sobald **Remaining Time** = 0s ist.

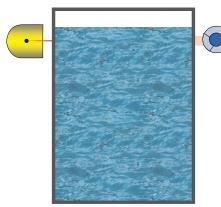


Bild 5-3 Voller Behälter

Die nächste Messung kann nur bei einer 2-Punkt-Kalibrierung durchgeführt werden (**Step 2** ▶ **Calibration Method**: **2-POINT**). Andernfalls können Sie diesen Schritt überspringen, die notwendigen Daten wurden dann in Schritt 3 (**Step 3**) bereits eingegeben.

Für die Messung muss der Füllstand im Behälter oberhalb der Überwachungshöhe sein oder der Behälter muss ganz voll sein. Während sie einlesen, darf der Füllstand nicht unter die Schaltschwelle fallen und die Bedingungen im Behälter müssen soweit wie möglich den Bedingungen im Betrieb entsprechen. Sofern dies für Ihre Applikation zutrifft und den Strahlengang beeinflusst, betrifft dies z.B. die Gasdichte, einen evtl. vorhandenen Rührer oder Kühl-/Heizmantel (Temperatur, Füllung).

- ▶ Wählen Sie unter ReadIn UPPER-PT aus.
- ▶ Bestätigen Sie mit **OK**, sobald **Remaining Time** = 0s ist.

Band 3 5 Kalibrieren

Calibrate + Auto Set

Mit diesem Menüpunkt aktivieren Sie die bei den Messungen ermittelten Kalibrierdaten. Dabei werden die Kalibrierdaten in den Parametersatz **Meas Parameter** übertragen. Somit erhält der Detektor eine neue Kalibrierung, mit der zukünftig die Messwerte ermittelt werden. Dabei werden auch automatisch die optimale Schaltschwelle und die Zeitkonstante berechnet.

Bitte beachten Sie, dass bei **Calibrate + Auto Set** zusätzlich folgende Werte gesetzt werden:

Evaluation Mode = AUTO

(Zeitkonstante und Grenzwert werden automatisch ermittelt und laufend aktualisiert.)

- Setup Gas Density = 0

(Gasdichtekompensation ist ausgeschaltet.)

- Op Gas Density = 0

(Gasdichtekompensation ist ausgeschaltet.)

Nach der Kalibrierung zeigt eine Statusmeldung, ob die Kalibrierdatenaktivierung erfolgreich durchgeführt werden konnte. Falls nicht, bleiben die Messparameter unverändert.

Mögliche Statusmeldungen sind:

- 0-OK

Die durchgeführte Kalibrierung ist in Ordnung.

1-ERROR BACKGROUND

Die Zählrate für die Hintergrundstrahlung (Nulleffekt, Background) ist höher als die für die Kalibrierpunkte für Leer oder Voll (Lower Cal Pt-Empty oder Upper Cal Pt-Full).

- 2-ERROR CALIBRATION POINT

Die Leerzählrate ist niedriger als die Vollzählrate (Lower Cal Pt-Empty < Upper Cal Pt-Full).

- 3-ERROR THRESHOLD / TIME CONSTANT

Die Schaltschwelle (**Threshold**) liegt zu nahe an einem der Kalibrierpunkte für Leer (**Lower Cal Pt-Empty**) oder Voll (**Upper Cal Pt-Full**) oder bei der manuellen Kalibrierung wurde die Zeitkonstante zu klein gewählt. Der Fehler tritt auch auf, wenn die Zeitkonstante 999s überschreitet.

- 4-ERROR THRESHOLD OUT OF RANGE

Die Schaltschwelle (**Threshold**) plus oder minus der Hysterese überschreitet den zulässigen Bereich von 0% ... 100%.

5-ERROR BU TC

Die Zeitkonstante für den Build-up-Alarm liegt über 14.400 Sekunden. Dies liegt entweder daran, dass der Unterschied zwischen Leerzählrate und Vollzählrate zu gering ist (Lower Cal Pt-Empty \approx Upper Cal Pt-Full) oder dass der Grenzwert zu nahe an einem der Kalibrierpunkte für Leer (Lower Cal Pt-Empty) oder Voll (Upper Cal Pt-Full) liegt.

- 6-DATE ERROR

Ein Datum steht noch auf dem Standardwert 1.1.2000. Bei **Calibrate** den Parameter **Date** überprüfen. Bei **Restore** das Datum in **Restore Date** überprüfen.

Kalibrieren Band

7-CHECK ERROR

Der Status der Kalibrierparameter konnte nicht vollständing überprüft werden. Wiederholen Sie in diesem Fall die Kalibrierung. Tritt der Fehler erneut auf, so ist der Detektor, zumindest aber dessen Elektronik zu tauschen.

Falls einer der Fehler aufgetreten ist, versuchen Sie, die Ursache zu beseitigen und führen Sie eine erneute Kalibriermessung durch. Unter **Meas Parameter** im Start-Menü können Sie überprüfen, ob die Kalibrierwerte nach der Kalibrierung richtig in die Messparameter übernommen wurden.

Füllen Sie zum Schluss das Inbetriebnahmeprotokoll aus, siehe Kapitel 9, Seite 3-373.

Führen Sie nach einer Kalibrierung immer eine Testrechnung durch. Damit stellen Sie sicher, dass Ihre Kalibrierdaten plausibel sind und der Detektor richtig eingestellt ist (siehe Kapitel 2.35,

Seite 3-306, Cps Average Mode und Cps Average Test).

Die Kalibrierung ist damit abgeschlossen.

Erweiterte Funktionalitäten

Neben der Kalibrierung mit **Quick Start** können Sie auch mit dem Menü Cal Parameter kalibrieren. Dort werden weitere Möglichkeiten eröffnet, wie:

- Manuelle Einstellung von Grenzwert und Zeitkonstante
- Kalibrieren mit Gasdichtekompensation

Im Menü **Signal Condition** können sie zusätzliche Signale und Meldungen aktivieren.

Über **I/O Setup** können Sie vorhandene oder optionale I/Os nutzen um Signale auszugeben, oder zu verarbeiten.

Um nicht Gefahr zu laufen dass das Gerät fehlerhafte Signale liefert, ist es bei diesen Möglichkeiten unbedingt erforderlich, dass Sie sich vor der Bedienung genau mit diesen zusätzlichen Funktionen vertraut machen.

> 54733-20BA1S 05.2025

Band 3 5 Kalibrieren

5.3 Funktion der Messung sicher stellen

Um sicher zu stellen dass die Messung nach einer Kalibrierung oder Parameteränderung korrekt arbeitet, gibt es folgende Möglichkeiten:

- Prüfen der Live-Anzeige
- Messwertvergleich mit dem Leitsystem
- Messwertsimulation mit Testgenerator
- Testfahrt mit Produkt
- Archivierung der Kalibrierdaten

5.3.1 Messwertsimulation mit Testgenerator

Das Messystem besitzt einen internen Testgenerator der Impulse erzeugt mit dem sie die Kalibrierung und damit die Messwertanzeige genau überprüfen können.

Hierzu können die Zählraten der Kalibrierwerte verwendet werden.

- Wählen Sie Device Config ► Setup ► Service ► Test ► Test Settings an.
- Setzen Sie Cps Average Mode auf FIXED VALUE.
- ▶ Geben Sie für **Cps Average Test** die Kalibrierzählrate ein.
- ▶ Lesen Sie bei **Level** bzw. **Density** den erwarteten Messwert ab.

Neben den Kalibrierzählraten können sie bei Bedarf auch Zwischenwerte eingeben um die Messwertanzeige zu prüfen.

Zeitgleich können sie bei jeder einzelnen Zählrate auch die Messwertanzeige im Leitsystem mit dem angezeigten Messwert im LB 480 vergleichen um die korrekte Übergabe des Messsignals sicher zu stellen.

Nach Beendigung dieser Simulation müssen Sie den Parameter **Cps Average Mode** wieder auf **NORMAL** zurückschalten. Wird dies vergessen, bleibt die Messung eingefroren. Als Erinnerung gibt der Kommunikator zyklisch die Fehlermeldung 106 aus und der **Operating Status** der Messung zeigt **TEST** (anstatt RUN) an.

5.3.2 Prüfen der Live Anzeige

Mit der Live Anzeige vergewissern sie sich, dass kein Fehler ansteht und die Messung im normalen Messmodus ist. Ebenfalls können sie erkennen ob die Messwerte plausibel sind und korrekt ausgegeben werden.

- ▶ Wählen Sie **Live Display** an.
 - Der Operating Mode muss RUN anzeigen.
 - Bei Level bzw. Density muss der aktuelle Sollwert angezeigt werden und leben*
 - Bei Current OUT muss der aktuelle Sollwert angezeigt werden und leben*
 - *) Leben = die Anzeige muss um einen Mittelwert schwanken

5 Kalibrieren Band 3

5.3.3 Testfahrt mit Produkt

Dieser Test gibt Ihnen die höchste Sicherheit, da hier unter realen Bedingungen geprüft wird. Der Test sollte hierbei möglichst unter Betriebsbedingungen durchgeführt werden, sprich ein z.B. eventuell vorhandener Rührer sollte laufen und ein im Betrieb vorhandener Gasdruck sollte auch beim Test vorhanden sein. Allerdings ist der Aufwand hierzu häufig sehr hoch, so dass die Möglichkeiten vor Ort und die Notwendigkeit zunächst abzuklären sind. In vielen Fällen kann anstatt Produkt auch z.B. Wasser zu einer Testfahrt verwendet werden und ein eventueller Gasdruck kann häufig mit Stickstoff simuliert werden. Die abweichende Dichte zwischen Produkt und dem zum Test verwendeten Ersatzprodukt ist zu berücksichtigen.

- Füllen Sie den Behälter. Fahren Sie den Behälter unter Betriebsbedingungen von Leer bis Voll durch.
- Zeichnen Sie das Messsignal auf und verifizieren Sie dieses.

Ersatzverfahren, wie z.B. Strahler bei leerem Behälter schließen, können nur bedingt als Funktionstest verwendet werden.

Werden Ersatzverfahren gewählt, müssen die einschränkenden Bedingungen genau geprüft werden.

- ▶ Fahren Sie den Grenzstand unter Betriebsbedingungen an.
- ▶ Zeichnen Sie die Reaktion der Messung auf und verifizieren Sie diese.

Ersatzverfahren, wie z.B. Strahler bei leerem Behälter schließen, können nur bedingt als Funktionstest verwendet werden.

Werden Ersatzverfahren gewählt müssen die einschränkenden Bedingungen genau geprüft werden.

Eine Dichtemessung lässt sich am besten durch Probenwerte prüfen. Hierzu sollten über den Messbereich verteilt Proben genommen und diese mit dem Anzeigewert verglichen werden.

Deckt der Messbereich auch die Dichte von 1g/cm³ ab, dann kann auch Wasser zur Überprüfung verwendet werden. Sofern es nicht möglich ist verschiedene Dichten innerhalb des Messbereiches anzufahren, kann ersatzweise eine Einpunktkalibrierung durchgeführt werden. Da hierbei nur ein Punkt innerhalb des Messbereiches geprüft wird, muss geklärt werden ob dieser Test für den Anwendungsfall ausreichend ist.

Im Zweifelsfall empfehlen wir Ihnen zur Unterstützung den Service der Firma BERTHOLD TECHNOLOGIES anzufordern.

Füllstand

Grenzwertschalter

Dichtemessung

54733-20BA1S 05.2025 Band 3 5 Kalibrieren

5.3.4 Kalibrierdaten archivieren

Generell empfehlen wir sowohl die Kalibrierdaten als auch alle anderen Einstellwerte zu archivieren. Ein eventuell notwendiger Austausch des Messsystems wird dadurch wesentlich vereinfacht und beschleunigt. Auch eine fehlerhafte Bedienung kann zu Datenverlust führen bei denen archivierte Daten sehr hilfreich sind.

Um Daten zu archivieren gibt es verschiedene Möglichkeiten.

- Ausfüllen des Parameterprotokolls im Anhang der Betriebsanleitung
- Digitale Speicherung der Daten

Für die digitale Speicherung stehen, je nach verwendeter Kommunikationsschnittstelle und Host, folgende Wege zur Verfügung:

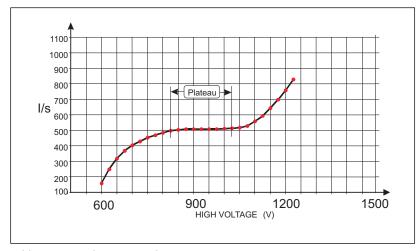
- LB 480-PC (Berthold spezifisches Programm für die RS485 Schnittstelle)
- HART[®]-Kommunikator
- Siemens Simatic PDM
- AMS Emerson Process

Siehe auch Band 3, Kapitel 1.5, "Parametersätze archivieren".

5 Kalibrieren Band 3

3 – 344 54733-20BA1S 05.2025

Funktionale Abläufe


Das folgende Kapitel beschreibt die wichtigsten funktionellen Abläufe, wie sie im Umgang mit den Detektoren der SENSseries auftreten.

6.1 Plateaumessung durchführen

Im Folgenden führen Sie eine Plateaumessung durch. Die Plateaumessung überprüft die Funktion des Detektors.

WICHTIG

Die Strahlenbedingungen müssen während der Plateauaufnahme konstant sein!

Ergebnis einer Plateaumessung Bild 6-1

Das Plateau ist der flache Teil in der Kennlinie und ist in der Regel ca. 200V lang (siehe auch Band 2, Kapitel 4.5). Bitte beachten Sie dass die obige Kennlinie und folgenden Angaben nur für einen NaI-Detektor gelten. Bei einem Plastikszintillator ist das Plateau steiler und muss ggf. von einem BERTHOLD-Servicetechniker qualifiziert werden.

Die Kristall-Multiplier-Kombination oder der komplette Detektor muss ausgetauscht werden wenn

- das Plateau kürzer als 50V ist
- sich die Zählrate um mehr als 5% pro 100 Volt Hochspannung ändert

WICHTIG

Während der Plateaumessung bleibt die Füllstandmessung auf dem letzten Messwert eingefroren.

Falls das Start-Menü nicht bereits angezeigt wird, verwenden Sie **HOME**, um in das Start-Menü zu gelangen.

- Wählen Sie Device Config ➤ Setup ➤ Service ➤ Plateau ➤ Plateau Measurement an.
- Geben Sie bei HV Start die Hochspannung ein (z.B. 500V, minimal 300V), bei der die Plateaumessung beginnen soll, und bestätigen Sie die Eingabe mit ENTER.
- ► Geben Sie bei **HV Stop** die Hochspannung ein (z.B. 1000V, maximal 1300V), bei der die Plateaumessung enden soll, und bestätigen Sie die Eingabe mit **ENTER**.
- Geben Sie bei HV Step die Schrittweite zwischen den Messpunkten ein (z.B. 50V) und bestätigen Sie die Eingabe mit ENTER.

Die Schrittweite bestimmt die Anzahl der Wertepaare. Je größer die Schrittweite, desto geringer die Anzahl der Wertepaare!

- ▶ Geben Sie bei Meas. Time die Zeit ein, wie lange ein Messpunkt aufgenommen bzw. die Zählrate gemittelt werden soll (z.B. 20s), und bestätigen Sie die Eingabe mit ENTER.
- ▶ Übertragen Sie die Eingaben mit **SEND**.
- ▶ Wählen Sie **PLATEAU** bei **HV Mode** aus, um die Plateaumessung zu starten.

Die Plateaumessung wird gestartet. Dazu wird der Messmodus verlassen und das Plateau des Multipliers, der im Detektor eingesetzt ist, wird gemessen.

Während der Plateaumessung werden laufend die Werte folgender Parameter aktualisiert:

- HV Live: HV-Wert der Spannung, bei der gerade die Zählrate gemessen wird.
- CPS Live: Zählrate.

Am Ende der Plateau-Messung schaltet der Detektor selbstständig wieder auf **HV Mode**: **AUTO** bzw. **MANUAL** zurück, je nachdem, welcher Modus zuletzt eingestellt war.

Die Plateaumessung ist damit abgeschlossen und kann unter **Plateau View** als Tabelle oder als Plateau-Kurve betrachtet und geprüft werden.

6.2 Master Reset

Neben den in **Device Config** ➤ **Setup** ➤ **Service** ➤ **Reset Device** auf **Seite 3-304** beschriebenen Möglichkeiten, den Detektor oder bestimmte Funktionen zurückzusetzen, gibt es noch den *Master Reset*, der *alle* Parameter löscht. Um den Master Reset durchzuführen, müssen Sie das Gehäuse öffnen.

i

WICHTIG

Führen Sie einen Master-Reset nur dann durch, wenn zuvor ein **SW Reset** oder gar ein **Factory Reset** nicht erfolgreich war.

Beachten Sie dass nach einem Master Reset:

- die zuvor eingestellten Parameter verloren gehen
- der Licence Key erneut einzugeben ist
- Stromausgang und HV Default abgeglichen werden muss
- die Messung kalibriert werden muss

Im Zweifelsfall ist diese Arbeit dem Service der Firma BERTHOLD TECHNOLOGIES zu überlassen.

Explosionsgefahr!

Bei Detektoren, die im Ex-Bereich eingesetzt werden, darf das Gehäuse ausschließlich vom Service der Fa. BERTHOLD TECHNOLOGIES getauscht werden oder von Personen, die von BERTHOLD TECHNOLOGIES dazu autorisiert sind. Falls dies nicht möglich ist, müssen Sie den kompletten Detektor tauschen oder ins Herstellerwerk zur Reparatur schicken.

Bei Nicht-Ex-Geräten können Sie wie im Folgenden beschrieben vorgehen.

Vorbereitungen für Master Reset

Sie benötigen:

- M5 bzw. M8 Innensechskantschlüssel, um das Gehäuse zu öffnen.
- Elektronikstecker (Jumper), um zwei Pins zu überbrücken.
- Ihren Original License Key aus Ihrem Code-Listing bzw. aus dem Servicemenü.
- Multimeter zum Abgleich des Stromausgangs.
- Detektor Code f
 ür HV-Einstellung.
- Den aktuellen Wert für HV Default (Kapitel 2.14, Seite 3-273).
- Saubere Arbeitsumgebung, damit kein Fremdkörper oder Schmutz auf die Elektronik gelangen kann.

⚠ WARNUNG

Lebensgefahr durch Stromschlag!

Bei geöffnetem Gehäuse können spannungsführende Teile berührt werden, wenn die Stromversorgung angeschlossen ist.

Der Master Reset muss mit geöffnetem Gehäusedeckel und bei eingeschalteter Spannungsversorgung durchgeführt werden. An den Klemmen 1 bis 4 vom Netzteil liegt die Netzspannung an.

Desweiteren liegt Hochspannung im Bereich der Sockelplatine für den Photomultiplier an.

Master Reset durchführen

- 1. Detektor spannungsfrei schalten.
- 2. Gehäuse öffnen.
- 3. Brücke auf Stecker "F" stecken (der Stecker befindet sich auf der CPU-Platine neben dem großen Kondensator).
- 4. Detektor einschalten und 10 sec warten.
- 5. Detektor wieder ausschalten.
- 6. Brücke von Stecker "F" abziehen.
- 7. Detektor einschalten und 10 sec warten.
- 8. Detektor erneut ausschalten.
- 9. $\mathsf{HART}^{\$}\text{-}\mathsf{Kommunikator}$ am Stromausgang im Anschlussraum anschließen.
- 10. Detektor erneut einschalten und 10 sec warten.
- 11. Fehlermeldung auf HART®-Kommunikator quittieren.
- 12. License Key neu eingeben, Menü **Device Config** ▶ **Setup** ▶ **Service** ▶ **License Key**.
- 13. Stromausgang mit Multimeter abgleichen, Menü Device Config ➤ Setup ➤ I/O Setup ➤ Current Out ➤ D/A trim, siehe Seite 2-175.

i WICHTIG

Der Abgleich ist unbedingt erforderlich, auch wenn der Stromausgang zu stimmen scheint.

- 14. Überwachung des 4–20mA-Stromsignals aktivieren (auf *ENABLED* setzen), Menü **Device Config** ▶ **Setup** ▶ **I/O Setup** ▶ **Current Out** ▶ **Current Loop Monitoring**.
- 15. **Detector Code** setzen, Menü **Device Config** ► **Setup** ► **Sensor Configuration** ► **Sensor Settings** ► **Detector Code**, siehe *Seite 2-175*.
- 16. HV Default setzen (siehe Kapitel 5.1.2).

Der Reset ist abgeschlossen, der Detektor ist damit bereit für die Kalibrierung. Band 3 7 Erläuterungen

Erläuterungen

Nulleffekt (Background)

Unter Nulleffekt oder Background versteht man die durch natürliche Umgebungsstrahlung (Hintergrundstrahlung) verursachte Zählrate. Die Höhe des Nulleffektes ist weitgehend vom Szintillatorvolumen abhängig. Der Nulleffekt wird bei der Zerfallskompensation nicht berücksichtigt, da er als konstant zu betrachten ist.

Ein Fehler bei der Aufnahme des Nulleffektes kann später zu Drifterscheinungen der Messung führen. Einflüsse aus benachbarten Strahlenguellen müssen deshalb ausgeschlossen werden.

Die Aufnahme des Nulleffektes ist nur beimSuperSENS erforderlich. Beim CrystalSENS muss der Nulleffekt nicht aufgenommen werden.

Im Folgenden werden drei Möglichkeiten dargestellt, den Nulleffekt zu ermitteln. Die für Ihre Messung geeignete Lösung, den Nulleffekt zu ermitteln, ist abhängig von der Situation vor Ort und von der Art der Strahlenguelle.

Mit leerem (Bild 7-1 links) oder vollem (Bild 7-1 rechts) Behälter und angebautem Detektor, aber ohne angebaute Abschirmung bzw. ohne Strahlereinbau in der Abschirmung.

i wichtig

Der Detektor darf von der auf die Seite gestellten und geschlossenen Strahlerabschirmung keine Strahlung empfangen. Dazu muss die Abschirmung mit dem Strahler im geeigneten Abstand (ca. 15m), oder hinter eine dicke Betonwand gestellt werden.

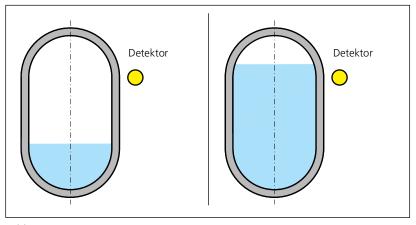


Bild 7-1 Beste Lösung

Beste Lösung

7 Erläuterungen Band 3

Zweitbeste Lösung

Mit *vollem* Behälter, angebautem Detektor und angebauter Abschirmung sowie eingebauter Strahlenquelle und bei *geschlossenem* Strahlenaustrittskanal.

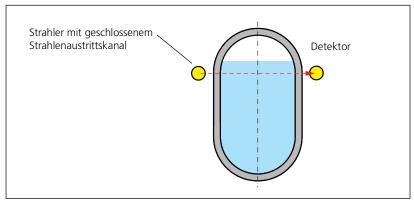


Bild 7-2 Zweitbeste Lösung

Drittbeste Lösung

Diese Vorgehensweise ist nur für CS-137-Strahler empfehlenswert.

Mit *leerem* Behälter, angebautem Detektor und angebauter Abschirmung sowie eingebauter Strahlenquelle und bei *geschlossenem* Strahlenaustrittskanal. Dabei empfängt der Detektor oft noch eine geringe Reststrahlung von der Strahlenquelle.

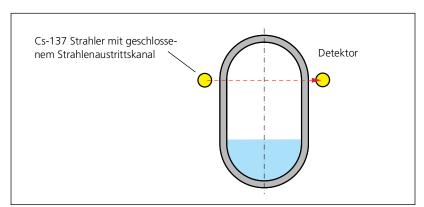
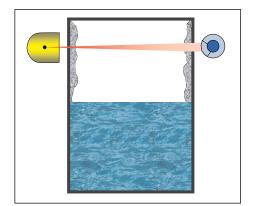


Bild 7-3 Drittbeste Lösung

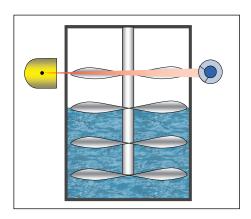

Bedingungen für den Leerabgleich

i WICHTIG

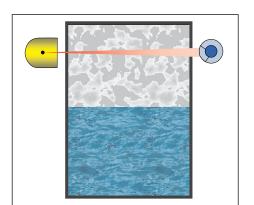
Der Leerabgleich, insbesondere bei Hochdruckbehältern, muss unter Betriebsbedingungen (Druck, Temperatur) erfolgen.

- Zum Leerabgleich müssen alle Abschirmbehälter des Messsystems montiert sein.
- Die Strahlenaustrittskanäle müssen geöffnet sein.
- Der Behälter sollte leer sein bzw. unterhalb des Grenzwertes gefüllt sein.

Wandansätze

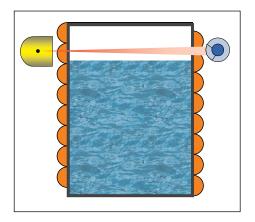


Der Behälter muss sauber entleert sein, damit keine Reste zurückbleiben. Wenn sich während des Betriebes Wandansätze aufbauen können, sollte nach einiger Zeit ein erneuter Leerabgleich durchgeführt werden.


i WICHTIG

Für Wandansätzen ist ein Messsystem mit einem Co-60 Strahler unempfindlicher als mit einem Cs-137 Strahler.

Rührwerk


Das Rührwerk muss in Betrieb sein sofern es Einfluss auf die Messung hat.

Hoher Gasdruck

 Steht der Behälter im Betrieb unter Gasdruck, so muss die Leer-Kalibrierung auch unter diesem Gasdruck erfolgen. Ist dies nicht möglich, dann kann die Leerkalibrierung auch ohne Gasdruck erfolgen und die Zählrate mit den entsprechenden Eingaben für die Gasdichte und den Messweg kompensiert werden.

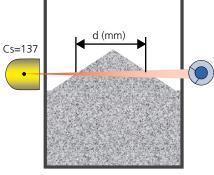
Kühl- und Heizmäntel

 Kühl- und Heizmäntel müssen zur Kalibrierung gefüllt sein. Um die Dichte der Kühl-/Heizflüssigkeit zu erhalten, sollten sie die gleiche Temperatur wie unter Betriebsbedingungen aufweisen.

7.3 Schüttkegelmessung

Bei Schüttgütern wird die Überwachungshöhe (Schaltschwelle oder Alarmschwellen für den Füllstand) an einem definierten Durchmesser des Schüttkegels bestimmt. Damit die Messung gut funktioniert, muss sich die Zählrate am Schaltpunkt deutlich von der bei vollem und von der bei leerem Behälter unterscheiden.

Sofern die Auslegung von BERTHOLD TECHNOLOGIES berechnet wurde, ist dies bereits berücksichtigt. Die Messanordnung muss an der Stelle installiert sein, an der der Schüttkegel-Durchmesser überwacht werden soll.


▶ Setzen Sie Evaluation Mode auf AUTO SET, siehe Seite 3-313.

- ► Stellen Sie Cal Method auf 1-POINT bzw. 2-POINT, siehe Seite 3-313.
- Ermitteln Sie die Zählraten für Leer (1-POINT), bzw. für Leer und Voll (2-POINT).
- Geben Sie bei Product Conditions die Produktdichte (Product Density) und den Durchmesser des Schüttkegels (Bulk Cone Diameter) ein, bei dem geschaltet werden soll, siehe Seite 3-293.
- Schließen Sie den Vorgang mit Calibrate ab, siehe Seite 3-283.

Der Schaltpunkt und die Zeitkonstante werden bei **Calibrate** automatisch neu berechnet.

Danach ist der Detektor wieder betriebsbereit.

Kalibriervorgang

7.4 Fremdstrahlungserkennung

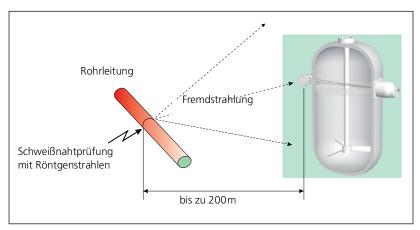


Bild 7-4 Fremdstrahlung

7.4.1 Fremdstrahlung detektieren

Die hohe Gamma-Empfindlichkeit von Szintillationsdetektoren kann zu Fehlanzeigen führen. Zur Erkennung von Fremdstrahlung lässt sich eine zweifach wirkende automatische Plausibilitätsprüfung aktivieren.

Der Alarm wird bei folgenden Bedingungen ausgelöst:

Maximal mögliche Zählrate (Leerabgleich)

Is > Io * 1.5

Is = aktuelle, über eine Sekunde integrierte Zählrate in Ips Io = maximale Zählrate bei Leerabgleich

Ein relativer Grenzwert wird überwacht, d.h., die Alarmschwelle wird beim Überschreiten einer maximalen Dosisleistung (Kalibrierwert bei leerem Behälter) am Detektor erreicht.

Fehlalarme durch betriebliche Einflüsse sind hierbei nicht möglich. Allerdings werden nur stärkere Fremdstrahlungen registriert.

Band 3 7 Erläuterungen

Wartezeit Zählrate unter 1,5 x lo? Messung im RUN-Modus

7.4.2 Ablaufdiagramm der Fremdstrahlungserkennung

Wird Fremdstrahlung erkannt, wird der folgende Automatismus angestoßen:

Wird die Fremdstrahlung erkannt, geht die Messung in den HALT-Modus.

• Messwert und Stromausgang werden "eingefroren".

Die Messung wird bis zum Ablauf der eingestellten Wartezeit "eingefroren".

Nach Ablauf der Wartezeit wird überprüft, ob die ankommende Zählrate kleiner als das 1,5-Fache der kalibrierten Leerzählrate (Io) ist (siehe Fall A). Falls nicht, wird die Wartezeit erneut gestartet. 7 Erläuterungen Band 3

7.5 Zeitkonstante

Die Zeitkonstante wird automatisch berechnet (Werkseinstellung), kann aber auch manuell auf einen festen Wert gesetzt werden. Die Zeitkonstante glättet das Ausgangssignal. Dabei können sowohl statistische Schwankungen als auch prozessbedingte Füllstandsschwankungen, z.B. durch Rührer, geglättet werden.

Die vom Detektor gelieferten Messwerte werden mit der Zeitkonstanten gemittelt.

Es wird eine sog. RC-Mittelung durchgeführt:

 $nM = aM + ((AZR - aM) * (1 - e(-t/\tau))$

nM = neuer Mittelwert

aM = alter Mittelwert

AZR = aktuelle, ungemittelte Zählrate (Aktuelle Anzeigezählrate)

t = Zeitabstand der Messungen in Sekunden

 τ = Zeitkonstante in Sekunden

Bild 7-5 zeigt die Reaktion des Ausgangssignals bei einer sprunghaften Befüllung des Behälters (Eingangsänderung) von 0 auf 100%.

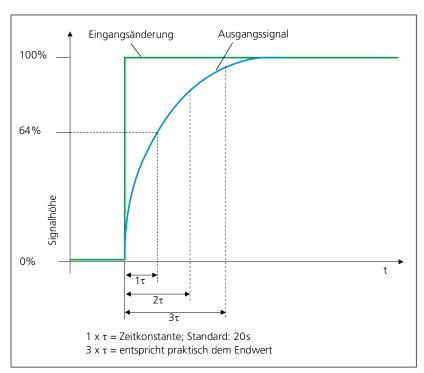


Bild 7-5 Zeitkonstante

3 – 356 54733-20BA1S 05.2025

Band 3 7 Erläuterungen

7.6 Softwarestände

Um die SENSseries zu bedienen, werden zwei Programme benötigt:

- Embedded Software: Sie ist in der SENSseries (Hardware) gespeichert.
- Device Description (DD): Sie ist auf dem HART®-Kommunikator gespeichert.

Damit die Bedienung reibungslos funktioniert, muss die Version der DD mit der embedded Software auf der SENSseries zusammenpassen.

Mit folgender Prozedur finden Sie die Revision der Device Description (DD) LB 480. Die Device Description ist die Bedienoberfläche, die der $\mathsf{HART}^{\$}$ -Kommunikator benötigt, um das jeweilige Gerät, z.B. die SENSseries LB 480, zu bedienen. Für jedes Gerät wird eine eigene DD benötigt.

7.6.1 Software-Management

Software-Versionen anzeigen

Sollte das Start-Menü nicht bereits angezeigt werden, dann wählen Sie **HOME**, um das Menü aufzurufen.

- Verlassen Sie das Start-Menü, indem Sie die Taste "nach links" wählen.
- ▶ Wählen Sie **UTILITY** an.
- ▶ Wählen Sie **SIMULATION** an.
- ▶ Wählen Sie **BERTHOLD TECHNOLOGIES** an.
- ▶ Wählen Sie LB 480 an.

Hier können Sie die Revision der Device Revision (Dev vX) und der Device Description (DD vX) ablesen.

Art der Änderungen

 $\mathsf{HART}^{\circledR}$ unterscheidet zwei verschiedene Arten von Software-Änderungen:

- Änderungen, die sich auf Funktionen auswirken und somit die DD und die embedded Software betreffen.
 - Durch eine solche Änderung wird die Kompatibilität zu bisherigen Softwareversionen beeinflusst.
- Änderungen, die nur die DD oder nur die embedded Software betreffen.

Bei diesen Änderungen wird die Kompatibilität zur vorherigen Software-Version nicht beeinflusst.

Beispiel:

Wird eine neue Funktion hinzugefügt, die es ermöglicht, den digitalen Eingang der SENSseries zu aktivieren bzw. zu deaktivieren, dann muss die embedded Software geändert werden.

Desgleichen muss in der DD die Möglichkeit der Auswahl geschaffen werden. Da diese Funktion in vorhergehenden Versionen noch nicht vorhanden war, kommt es zu Inkompatibilitäten mit älteren Software-Versionen.

Je zwei Versionsnummern

 ${\sf HART}^{\circledR}$ hat daher ein System für die Kennzeichnung eingeführt, das gleichzeitig auch die Kompatibilität der DD mit der embedded Software beschreibt. Es gibt daher für jede Softwareänderung zwei ${\sf HART}^{\circledR}$ -spezifische Versionsnummern.

- Eine Nummer, die bei jeder Änderung hochgezählt wird:
 - Software rev für die embedded Software
 - DD v für die Device Description
- Eine Nummer, die nur hochgezählt wird, wenn die Kompatibilität mit der vorhergehenden Software nicht mehr gegeben ist:
 - Fld dev rev für die embedded Software
 - Dev v für die Device Description

Nachfolgend eine Tabelle der Software-Versionen für die SENSseries LB 480 für die Variante mit HART®-Kommunikator:

Version in der embe	dded Software in de	Device Description			
	Software-Versionen (ablesbar auf dem HART®-Kommunikator				
	unter > review		unter > simulation		
Software-Version	Software rev	Fld dev rev	Dev v	DDv	
1.00.00	1	1	1	1	
1.00.01	2	1	1	1	
1.00.02	3	1	1	1	
1.00.03	4	1	1	1	
1.00.04	5	1	1	1	

Band 3 7 Erläuterungen

Begriffserläuterungen

Softwarestand in der SENSseries (embedded Software)

Der Softwarestand der embedded Software in der SENSseries wird durch die folgenden drei Kennzeichnungen beschrieben:

- Software-Version: Berthold interne Versionsbezeichnung, z.B. 1.20.01
 - Sie wird benötigt, wenn die embedded Software der SENSseries aktualisiert werden soll.
- Software rev: fortlaufende Revisionsnummer, z.B. 12
 - Sie wird bei jeder embedded Software-Änderung hochgezählt.
 - Anzeige der Software rev siehe Seite 3-357.
- Fld dev rev: Field Device Revision, z.B. 3
 - Sie wird nur hochgezählt, wenn neue Kommandos implementiert wurden, die eine Inkompatibilität zu früheren DD-Versionen erzeugen.
 - Sie ist in der embedded Software der SENSseries gespeichert.
 - Sie zeigt an, welche DD erforderlich ist, um den vollen Funktionsumfang zu nutzen.
 - Sie wird von der DD (Dev v) auf Kompatibilität geprüft.
 - Anzeige der Fld dev rev siehe Seite 3-357.

Softwarestand der DD (Device Description)

Der Softwarestand der DD auf dem HART®-Kommunikator wird durch zwei Versionsnummern gekennzeichnet:

• Dev v: Device Version, z.B. 3

Revisionsnummer der DD auf dem Kommunikator.

- Sie wird nur bei Änderungen hochgezählt, bei denen neue Kommandos implementiert sind, die eine Inkompatibilität zu früheren Versionen erzeugen.
- Sie wird mit der Field Device Revision (siehe oben) auf Kompatibilität verglichen.
- Anzeige der *Dev v* siehe *Seite 3-357*.
- DD v: DD Version, z.B. 3

Fortlaufende Nummer der DD auf dem Kommunikator.

- Sie wird bei jeglicher DD-Änderung hochgezählt.
- Sie kann ggf. höher als die Dev v sein.
- Anzeige der *DD v* siehe *Seite 3-357*.

Sie können mehrere verschiedene Revisionen auf den HART[®]-Kommunikator laden. Der Kommunikator vergleicht die *Field Device Revision* der SENSseries mit der *Device Version* der DD. Automatisch wird die kompatible DD-Version gestartet.

Was tun, wenn...

Kompatibilität

Wenn keine passende DD auf dem ${\sf HART}^{\it \'{\it \'{\it B}}}$ -Kommunikator verfügbar ist, tritt einer der 2 folgenden Fälle ein:

7 Erläuterungen Band 3

Fall1:

Die DD auf dem Kommunikator ist älter als die Version der embedded Software in der SENSseries.

Beispiel:

DD auf dem Kommunikator: **Dev v1** Field Device Revision: **Fld dev rev: 2**

Dann wird am Kommunikator eine Warnung angezeigt.

Das heißt, die DD sollte aktualisiert werden, damit die volle Funktionalität des Detektors verwendet werden kann.

Es folgt die Frage: Continue with old description? Yes/No

▶ Wählen Sie **Yes**.

Mit dem Detektor kann jetzt normal gearbeitet werden. Lediglich neue Funktionen, welche die DD noch nicht unterstützt, sind nicht verfügbar.

Fall 2:

Die DD auf dem ${\sf HART}^{\circledR}$ -Kommunikator ist aktueller als die Version der embedded Software in der SENSseries:

Beispiel:

DD auf dem Kommunikator: **Dev v2** Field Device Revision: **Fld dev rev: 1**

Dann startet die *Generic DD*. HART[®] lässt nicht zu, dass in diesem Fall eine vorhandene DD des Herstellers geladen wird, da sonst das Programm am Kommunikator "abstürzen" kann. In der Generic DD können Sie nicht kalibrieren und viele Parameter für die SENSseries fehlen.

Universal Revision

Für alle Berthold-DDs sind die Universal Commands für $\mathsf{HART}^{\texttt{®}}$ 6 oder höher erforderlich.

Dazu muss der ${\sf HART}^{\it \'{\it e}}$ -Kommunikator von Emerson Process, Model 375/475 verwendet werden.

Sie können aber auch andere ${\sf HART}^{\it ®}$ -kompatible Kommunikatoren mit ${\sf HART}^{\it ®}$ 6 verwenden, die Enhancements unterstützen.

Hat der Kommunikator eine niedrigere Version als ${\sf HART}^{\it \tiny{\it I\!\!R}}$ 6, dann wird die *Generic DD* gestartet.

Um die Version der Universal Commands abzufragen, rufen Sie im HART[®]-Kommunikator das Menü **Device Config ▶ Setup ▶ Identifications ▶ Device Revision ▶ Universal Rev.** auf.

54733-20BA1S 05.2025

Fehlerbehandlung

Fehler werden über den digitalen Ausgang und/oder über den Fehlerstrom angezeigt, Fehlermeldungen werden über den HART®-Kommunikator angezeigt. Alle Fehlermeldungen werden auch im Fehlerspeicher zusammen mit Datum und Uhrzeit hinterlegt. Den Fehlerspeicher fragen Sie über **Device Config** ▶ **Diagnostic** ▶ **Log** ▶ **Error Log** ab.

Betriebsarten der Fehlerbehandlung

Das Verhalten bei Fehlern ist davon abhängig, welche Gewichtung in Error Handling (Device Config ▶ Setup ▶ Signal Condition ▶ Signal Parameter, Kapitel 2.16, Seite 3-277) eingestellt ist: NORMAL oder SENSITIVE.

Die beiden Betriebsarten verhalten sich wie folgt:

SENSITIVE

Alle Fehler führen dazu, dass der Stromausgang Fehlerstrom meldet. Um auch Warnmeldungen zu erhalten, müssen Sie Meldungen zusätzlich über das HART®-Signal oder den digitalen Ausgang auswerten.

Die Einstellung SENSITIVE wird automatisch aktiviert, wenn der Safety Mode ausgewählt wurde.

NORMAL

Nur schwere Fehler werden als Fehlerstrom gemeldet. Damit fällt der Messwert über das Stromsignal erst dann aus, wenn die Messung nicht mehr verwendet werden kann.

Um auch leichte Fehler und Warnmeldungen zu erhalten, müssen Sie Meldungen zusätzlich über das HART®-Signal oder den digitalen Ausgang auswerten.

WICHTIG

Die Einstellung NORMAL dürfen Sie nur wählen, wenn eine Gefährdung von Menschen oder ein Sachschaden bei einem fehlerhaften Messwert ausgeschlossen ist.

Wählen Sie SENSITIVE, wenn die Anlagensicherheit im Vordergrund steht. Verwenden Sie NORMAL, falls ein Ausfall der Messung unkritisch für Mensch und Umwelt ist und die Produktionssicherheit im Vordergrund steht.

Um den digitalen Ausgang für die oben angeführten Meldungen verwenden zu können, müssen Sie im Menüpunkt **Digital Out** Function die Einstellung WARNING + ERROR verwenden (Device Config ▶ Setup ▶ I/O Setup ▶ Digital Output ▶ Digital Out Function, siehe Kapitel 2.27, Seite 3-299).

8.2 Detektorverhalten bei Fehlern

In den folgenden Tabellen finden Sie die Beschreibung der Fehlercodes, Fehler- und Warnmeldungen, eine Angabe zum Grund des Fehlers und Hinweise zur Behebung. Um die Liste übersichtlicher zu gestalten, haben wir zwei Listen erstellt, die nach den Betriebsarten **SENSITIVE** bzw. **NORMAL** getrennt sind.

Die Liste ist deshalb so ausführlich, um möglichst alle in einem solchen radiometrischen Messsystem möglichen Fehlerquellen abzudecken und zu diagnostizieren. Damit lässt sich ein Höchstmaß an Sicherheit und Diagnosemöglichkeit für den Anwender erreichen.

In den einzelnen Spalten bedeuten

Kennung	Bedeutung
Х	Eine Fehlermeldung wird ausgegeben.
_	Es wird keine Fehlermeldung ausgegeben.
Error Log	Der aufgetretene Fehler wird in das Error-Log geschrieben.
HART [®]	Ein Fehlertelegram wird digital über HART [®] an das Prozessleitsystem ausgegeben. Das Leitsystem muss dazu das HART [®] -Signal auswerten.
Digital Out	Der digitale Ausgang des Detektors wird angesteuert. In der Standardausführung ist dies ein Open Collector.
Fehlerstrom	Der Stromausgang schaltet auf Fehlerstrom um. Das 4-20mA-Messsignal steht dann nicht mehr zur Verfü- gung. Das Messignal steht dann nur noch über das digitale HART®-Protokoll zur Verfügung.
SHUTDOWN	Der Stromausgang schaltet auf Fehlerstrom, die HV (Hochspannung am Photomultiplier) geht auf 0V. Die Messung bricht ab und kann nur durch einen Neustart des Detektors oder einen Softwarereset wieder gestartet werden, nachdem der Fehler behoben ist.
Selbstbehe- bend	Verschwindet der Fehler, dann wird auch der Fehler- zustand automatisch aufgehoben. Ist der Fehler nicht selbstbehebend, dann müssen Sie den Fehlerzustand durch einen Neustart oder Softwarereset zurücksetzen.
Messwertq	ualität für Master und Slave (nur HART®) ¹
g	Messwert ist gut
u	Messwert ist zweifelhaft
f	Messwert ist eingefroren
b	Messwert ist schlecht

^{1.} Das digitale ${\sf HART}^{\it @}{\sf -Protokoll}$ übermittelt neben dem Messwert auch dessen Qualität.

8.2.1 Fehlersignalisierung

Code	Fehlermeldung	Error Handling	N=Normal	>=>ensitiv	Error Log	HART®	Digital Out	Fehlerstrom	SHUTDOWN	Status Slave	Status Master	Selbstbehebend
101	HW module mis- sing or not tested	N S			X	X	X	X	x b	b b	b _	- x
102	Device data-set	N			X	X	X	X	Х	b	b	-
	error	S			х	х	х	х	х	b	b	-
103	RAM Error	N			х	x	x	х	х	b	b	-
		S			Х	Х	Х	Х	Х	b	b	_
104	Device Error	N S			X	X	X	X	X	b	b	_
105	Real time clock	N			X	X	X	Х	X	b u	b u	_
103	not valid	S			×	×	×	х		b	b	_
106	Test mode active	N								g	u	-
		S								g	u	-
107	Watchdog reset	N			х					g	g	х
		S			х	х	х	х	х	b	b	-
108	Safety parameter	N								g	g	-
	invalid	S			Х	Х	Х	Х		b	b	х
200	Data flow	N			Х	Х	Х	Х	Х	b	b	-
201	Error by analog	S			X	X	X	Х	X	b	b	_
201	input calibration	S			X	X	X	x		u u	u	×
202	Clock signal devi-	N			X	X	X	Х	х	b	b	_
	ation	S			х	х	х	х	х	b	b	-
300	Data flow	N			х	х	х	х	х	b	b	-
		S			х	х	х	х	х	b	b	-
301	Error by ADC calibration	N			Х	Х	Х			u	u	-
		S			Х	Х	Х	Х		u	u	_
302	Error by DAC calibration	N			X	X	X	.,		u	u	_
303	Supply 5.0V	S N		-	X	X	X	X		u b	u b	_ X
303	Supply 5.0V	S			×	×	×	×		b	b	X
304	Reference 2.0V	N			X	X	X	X		b	b	X
		S			х	х	х	Х		b	b	х
305	Reference 2.5V	N			х	х	х	х		b	b	х
		S			х	х	х	х		b	b	х
306	ERROR GND CPU	N			х	х	х	х		b	b	х
	ST9	S			X	х	х	х		b	b	х
307	No impulses in measuring	N			X	X	X	X		b	b	X
	channnel	S			Х	Х	Х	Х		b	b	X
308	No impulses in	N			х	х	х			u	u	х
	control channel	S			х	х	х	х		b	b	х
309	No impulses in auxiliary channel	N			х	х	х			u	u	х
	duxinary charmer	S			Х	Х	Х	Х		b	b	Х

	,											
Code	Fehlermeldung	Error Handling	N=Normal	S=Sensitiv	Error Log	HART®	Digital Out	Fehlerstrom	SHUTDOWN	Status Slave	Status Master	Selbstbehebend
310	Impulse diffe-	N			х	х	х	х		b	b	х
	rence measuring channel	S			х	х	х	х		b	b	х
311	Impulse diffe-	N			х	х	х	х		b	b	х
	rence control channel	S			х	х	х	х		b	b	х
312	Impulse diffe-	N			х	х	х	х		b	b	х
	rence auxiliary channel	S			x	х	x	х		b	b	х
313	Instable pulse	N								g	g	х
	rate	S								g	g	х
314	Threshold of	N			х	х	х			u	u	х
	measurement channel 1	S			x	x	x	х		b	b	x
315	Threshold of	N			Х	Х	Х			u	u	Х
	measurement channel 2	S			x	x	x	х		b	b	x
316	Threshold of con-	N			Х	Х	Х			u	u	Х
	trol channel 1	S			Х	х	Х	х		b	b	Х
317	Threshold of control channel 2	N			Х	Х	Х			u	u	Х
		S			Х	Х	Х	Х		b	b	Х
318	Threshold of auxiliary channel	N			Х	Х	Х			u	u	Х
	1	S			X	X	X	Х		b	b	X
319	Threshold of auxiliary channel	N			Х	Х	Х			u	u	Х
220	2	S			Х	Х	Х	Х		b	b	Х
320	HV voltage	N			Х	Х	Х			u	u	Х
221	C	S			X	X	X	X	X	b	b	_
321	Generated HV voltage	N			X	X	X	X		b	b	X
322		S			X	X	X	X	Х	b	b	_
322	HV reached its limit value	S			X	X	X	X		b	b	X
323	HV average is	N			×	^ X	X	^ X		b	b	X
323	20% lower than default HV	S			×	x	×	x		b	b	x
324	HV average is	N			х	х	х			g	g	х
	40% higher than default HV	S			x	X	X	x		u	u	X
325	Lower PMT cur-	N			х					u	u	х
	rent limit is exceeded	S			х					u	u	х
326	Upper PMT cur-	N			х	х	х	х	х	b	b	-
	rent limit is exceeded	S			х	х	х	х	x	b	b	_
327	Temperature	N			х	х	х			u	u	х
	sensor deviation	S			х	х	х	х		b	b	х

Code	Fehlermeldung	Error Handling	N=Normal	S=Sensitiv	Error Log	HART®	Digital Out	Fehlerstrom	SHUTDOWN	Status Slave	Status Master	Selbstbehebend
328	Temperature warning	N S			X	X	X	x		g b	g b	X
329	Temperature out	N			X	x	x	×		b	b	×
	of allowed limits	S			х	х	х	х	х	b	b	-
330	Detector mal-	N			х	х	х	х		b	b	х
	function	S			Х	х	х	х		b	b	Х
400	Data flow	N			X	X	X	X	X	b	b	-
401	Supply 11V	S			X	X	X	X	X	b	b	_
701	Supply 11V	S			×	x	×	x		b	b	x
402	Supply 5V	N			X	X	X	x		b	b	Х
		S			х	х	х	х		b	b	х
403	Supply 5VM	N			х	х	х	х		b	b	х
		S			х	х	х	х		b	b	х
404	Supply 3,3V	N			х	х	х	х	х	b	b	_
		S			Х	х	х	х	Х	b	b	-
405	RS-485 Commu- nication error	N			X	X	X	X		b	b	X
406	Remote device	S			X	X	X	X		b	b	X
400	warning	S			X	×	X			u u	u	X
407	Remote device	N			x	X	X	x		b	b	X
	error	S			Х	X	X	x		b	b	Х
500	Data flow	N			х	х	х	х	х	b	b	-
		S			х	х	х	х	х	b	b	-
502	Digital input mal-	N			х	х	х			g	u	х
	function	S			Х	х	х	х		g	b	х
503	Digital output malfunction	N			Х	Х	Х	Х		g	g	Х
F0.4		S			X	X	X	X		g	g	X
504	Inherited Mes- sage	N S			X					g g	g g	X
600	Data flow	N			x	x	x	x	x	b	b	_
		S			x	×	x	×	x	b	b	-
601	License Key Error	N			х	x	x	x	х	b	b	-
		S			х	х	х	х	х	b	b	-
603	Measuring Error	N			х	х	х			g	u	-
	check <error Status></error 	S			х	х	х	x		g	b	-

Code	Fehlermeldung	Error Handling	N=Normal	S=Sensitiv	Error Log	HART®	Digital Out	Fehlerstrom	SHUTDOWN	Status Slave	Status Master	Selbstbehebend
604	Decay Compen- sation Error	N			х	х	х			g	u	-
		S			Х	Х	Х	Х		g	b	-
605	Source Exchange	N			Х	Х	Х			g	g	Х
		S			Х	Х	Х			g	u	Х
606	Radiation Inter-	N			Х	Х	Х			g	f	Х
	ference	S			Х	Х	Х	Х		g	f	Х
607	RID Interference	N			Х	Х	Х			g	u	Х
		S			Х	Х	Х			g	g	Х
608	BuildUp	N			Х	Х	Х			g	u	Х
		S			Х	Х	Х	Х		g	u	Х
609	Inherited Mes-	N			Х					g	g	Х
	sage	S			х					g	g	Х
610	Inherited Mes-	N			х					g	g	Х
	sage	S			Х					g	g	Х
611	Inherited Mes-	N			Х					g	g	Х
	sage	S			Х					g	g	Х
612	Inherited Mes-	N			х					g	g	Х
	sage	S			х					g	g	Х
613	Inherited Mes-	N			х					g	g	Х
	sage	S			х					g	g	Х
700	Data flow	N			х	Х	х	х	Х	b	b	Х
		S			х	х	х	х	Х	b	b	-
701	Impulse diffe-	N			х	Х	Х	х		g	g	Х
	rence	S			х	х	х	х		g	g	Х
702	Current loop mal-	N			х	х	х	х		g	g	-
	function	S			х	х	Х	х		g	g	-
703	CLoop Monito-	N			х					g	g	Х
	ring Disabled	S			х					g	g	х
704	ERROR GND CPU	N			х	х	х			g	g	х
	ST6	S			х	х	х	х		g	g	х
900	Data Flow	N			х	х	х	х	х	b	b	_
		S			х	х	х	х	х	b	b	_
901	Signal Unlocked	N			х	х	х			g	u	х
		S			х	х	х	х		g	b	х

8.2.2 Fehlerbehandlung

Code	Fehlermeldung	Fehlergrund	Fehlerbehandlung
101	HW module missing or not tested		
103	RAM Error		
104	Device Error		
108	Safety parameter invalid		
200	Data flow		
201	Error by analog input calibration		
202	Clock signal deviation		
300	Data flow		
301	Error by ADC calibration		
302	Error by DAC calibration		
303	Supply 5.0V		
304	Reference 2.0V		
305	Reference 2.5V		
306	ERROR GND CPU ST9		
307	No impulses in measuring channnel		
308	No impulses in control channel		
309	No impulses in auxiliary channel		
310	Impulse difference measuring channel		
311	Impulse difference control channel		
312	Impulse difference auxiliary channel		Der Fehler lässt sich nur durch Tausch
313	Instable pulse rate	Hardwarefehler	des Detektors oder der Detektorelektro-
314	Threshold of measurement channel 1		nik beheben.
315	Threshold of measurement channel 2		
316	Threshold of control channel 1		
317	Threshold of control channel 2		
318	Threshold of auxiliary channel 1		
319	Threshold of auxiliary channel 2		
330	Detector malfunction		
400	Data flow		
401	Supply 11V		
402	Supply 5V		
403	Supply 5VM		
404	Supply 3,3V		
500	Data flow		
501	ERROR GND CPU ST6		
502	Digital input malfunction		
503	Digital output malfunction		
600	Data flow		
700	Data flow		
701	Impulse difference		
900	Data Flow		

Code	Fehlermeldung	Fehlergrund	Fehlerbehandlung			
102	Device data-set error	Parametersatz ungültig	Erscheint der Fehler beim Neustart, nachdem eine neue Software geladen wurde, dann muss eine Factory Reset durchgeführt werden. Steht der Fehler dann immer noch an, ist ein zusätzlicher Software Reset erforderlich. Erscheint der Fehler während des			
			Betriebes, dann lässt sich der Fehler nur durch Tausch des Detektors oder der Detektorelektronik beheben.			
105	Real time clock not valid	Datum ungültig	War das Gerät ausgeschaltet, dann überprüfen bzw. aktualisieren Sie Datum und Uhrzeit.			
			War das Gerät in Betrieb, als der Fehler auftrat, dann liegt ein Defekt in der Hardware vor. Der Fehler lässt sich nur durch Tausch der Detektor-Elektronik beheben.			
106	Test mode active	Ein Sicherheitsparame- ter konnte nicht gesetzt werden.	Im Servicemenü alle Testeinstellungen überprüfen bzw. zurücksetzen.			
107	Watchdog reset	Durch eine Leitungsstö- rung wurde ein Fehler im Programmablauf ausge- löst und das Gerät auto- matisch neu gestartet.	Sofern der Fehler erneut auftritt, ist die Detektor-Elektronik zu tauschen. Ist der Tausch erfolglos, suchen Sie nach elekt- romagnetischen Störungen.			
108	Safety Parameter invalid	Safety parameter invalid	Überprüfen Sie im Diagnosemenü wel- cher der Safety-Parameter nicht gesetzt werden konnte und warum.			
320	HV voltage					
321	Generated HV voltage	Es wurde eine Fehl-	Der Fehler lässt sich nur durch Tausch			
322	HV reached its limit value	messung in der Hoch-	der Detektor-Elektronik oder des Photo-			
323	HV average is 20% lower than default HV	spannung festgestellt.	multipliers beheben.			
324	HV average is 40% higher than default HV					
325	Lower PMT current limit is exceeded	Der PMT Strom ist >50µA.	Entweder liegt starke Störstrahlung an oder der Photomultiplier (PMT) ist			
326	Upper PMT current limit is exceeded	Der PMT Strom ist >100µA.	defekt und deshalb zu tauschen.			
327	Temperature sensor deviation	Die redundant gemessene Elektroniktemp. weicht mehr als 10°C voneinander ab.	Der Fehler lässt sich nur durch Tausch der Detektor-Elektronik beheben.			
328	Temperature warning	Die Temperatur im Detektor hat 75°C über- schritten, oder -35°C unterschritten.	Wasserkühlung montieren bzw. Heizung montieren.			
329	Temperature out of allowed limits	Die Temperatur im Detektor hat 85°C über- schritten, oder -40°C unterschritten.	Es wird empfohlen den Detektor zur Rep. ins Herstellerwerk zu senden, selbst dann wenn der Detektor schein- bar noch funktioniert.			
405	RS-485 Communication error	Master-Slave Kommuni- kation gestört.	Prüfen Sie die Verdrahtung zwischen Master und Slave, die Detektoradresse und die Versorgungsspannung.			

3 - 366 54733-20BA1S 05.2025

Code	Fehlermeldung	Fehlergrund	Fehlerbehandlung
ပိ	rememberating	remergrana	remerbenantiang
406	Remote device warning	Ein Slave liefert eine Warnmeldung.	Gehen Sie in das Diagnosemenü und überprüfen sie in der dortigen Slave-Tabelle welche Warnmeldung bei welchem Slave ansteht.
407	Remote device error	Ein Slave liefert eine Fehlermeldung.	Gehen Sie in das Diagnosemenü und überprüfen sie in der dortigen Slave-Tabelle welche Fehlermeldung bei welchem Slave ansteht.
504	Inherited Message	Eine neue Soft-ware-Applikation wurde aufgespielt und ein zuvor gespeicherter Fehler ist in der neuen Applikation nicht exis- tent.	Löschen Sie den Fehlerspeicher mit Reset Error Log .
601	License Key Error	Der License Key ist falsch oder passt nicht zur Anwendung.	License Key überprüfen und korrigieren. Ggf. Rücksprache mit BERTHOLD TECHNOLOGIES.
603	Measuring Error check <error status=""></error>	Bei der Zerfallskompen- sation wurde ein Fehler in den Messparametern entdeckt.	Suchen Sie nähere Hinweise über die Fehlerursache im Diagnostic-Menü unter Error Status .
604	Decay Compensation Error	Die Zerfallskompensation konnte nicht durchgeführt werden.	Der Fehler lässt sich nur durch Tausch der Detektor-Elektronik beheben.
605	Source Exchange	Anhand der eingegebe- nen Kriterien wurde fest- gestellt, dass der Strah- ler zu schwach wird.	Strahler bei nächster Gelegenheit tauschen. Hierzu ist mit dem Hersteller Kontakt aufzunehmen.
606	Radiation Interference	Anhand der eingegebe- nen Kriterien wurde Störstrahlung festge- stellt.	Prüfen Sie ob Schweißnahtprüfungen durchgeführt, werden, oder ob die Kri- terien falsch bzw. nicht optimal einge- stellt sind.
607	RID Interference	Meldung in dieser Software nicht aktiv.	
608	Inherited Message	Eine neue Soft- ware-Applikation wurde aufgespielt und ein zuvor gespeicherter Fehler ist in der neuen Applikation nicht existent.	Löschen Sie den Fehlerspeicher mit Reset Error Log.
609	Rate Factor exceeds its limit	Die automatische Gas- dichtekompensation ist aktiviert. Während der Messung hat der Dichte-Kompensations- faktor den zulässigen Bereich überschritten.	Überprüfen Sie die Kalibrierung und die Einstellungen der Gasdichtekompensa- tion.

Code	Fehlermeldung	Fehlergrund	Fehlerbehandlung
702	Cloop Malfunction	Wackelkontakt in der Stromschleife. Impedanz in der Stromschleife	Sofern ein Wackelkontakt oder eine zu hohe Impedanz ausgeschlossen werden kann, ist die Sonde zur Reparatur ins Werk einzuschicken.
		>500Ω - Defekt im Stromaus- gang der LB 480	
703	CLoop Monitoring Disabled	Die Überwachung des Stromausganges wurde abgeschaltet. Meldung erscheint immer beim Neustart.	Aktivieren Sie die Überwachung im Menü I/O Setup, sofern keine Gründe vorliegen die Überwachung ausgeschal- tet zu lassen.
901	Signal Unlocked	Der Detektor wurde mit dem Passwort entriegelt.	Die Warnmeldung wurde aufgrund der Einstellung in Signal Unlocked erzeugt, siehe <i>Kapitel 2.16</i> , Seite 3-277 .

8.3 Fehlersuche

Problem	Ursache	Maßnahme				
Kein Signal	System funktioniert nicht	Stromversorgung prüfen				
Zählrate zu gering	Abschirmung nicht oder nicht korrekt geöffnet	Schloss überprüfen und in Position OPEN sichern				
	Ausrichtung der Nutzstrahlung auf den Detektor falsch	Ausrichtung korrigieren und optimieren				
	Behältereinbauten im Strahlengang	Durchstrahlungsebene versetzen				
	Wandansätze im Behälter	Wandansätze beseitigen oder erneut Kalibrieren, wenn die Wandansätze nicht entfernt werden können.				
	Strahler am Ende seiner nutzbaren Lebensdauer	Strahler erneuern				
keine oder falsche Füllstandanzeige	Eingabe der Füllstandsendwerte falsch	Kalibrierwerte und Füllstandanzeige prüfen				
Füllstandanzeige schwankt stark	Zeitkonstante zu klein	Zeitkonstante im Parameter-Menü vergrößern (min. 20s)				
	Falsche Kalibrierung	Kalibrierwerte überprüfen				
	Schnellumschaltung mit zu kleinem Sigma-Wert	Sigma-Wert erhöhen oder Schnellumschaltung deaktivieren				
	Zählrate zu gering (siehe oben)	Strahleralter und Durchstrahlungsebene prüfen; Detektor austauschen				
Füllstandanzeige	Detektorstabilisierung defekt	Detektor austauschen				
driftet	Multiplier defekt	Multiplier austauschen				
Stromausgang auf 24mA	Stromausgang fehlerhaft, oder defekt.	Stromausgang neu kalibrieren. Anschließend Detektor durch Software Reset , oder durch Aus/Ein der Spannungsversorgung neu starten.				
		Sofern der Stromausgang sich nicht kalibrieren lässt muss der Detektor repariert werden.				

8.4 Reset

Die Detektoren der SENSseries können auf verschiedene Arten zurückgesetzt werden. Verwenden Sie das Menü **Device Config** ► **Setup** ► **Service**, um einen Software-Reset durchzuführen oder alle Einstellungen auf die Werkseinstellung zurückzusetzen.

1. Software-Reset: SW RESET

Startet den Detektor neu, die Parameter bleiben unverändert. Die Funktion entspricht dem Aus- und Einschalten der Versorgungsspannung.

2. Werkseinstellung: FACTORY RESET

Setzt die meisten Einstellungen auf Werkseinstellung zurück. Einige Einstellungen wie die Justage des Stromausgangs und der License Key bleiben jedoch erhalten. Schalten Sie den HART[®]-Kommunikator aus und wieder ein, nachdem Sie den Reset ausgelöst haben.

Das Aus-/Einschalten der Versorgungsspannung bewirkt ebenfalls ein Reset ähnlich wie beim Software-Reset, allerdings werden hierbei auch eventuelle "Hardwareblockaden" behoben. Die Parameter bleiben unverändert.

Siehe auch Kapitel 6.2, "Master Reset", Seite 3-347.

8.5 Betriebsarten während der Messung

Verwenden Sie **Operating Mode** (Menü **Live Display**, **Seite 3-262**), zur Anzeige des aktuellen Betriebszustandes.

8.6 Fehlerquittierung

Wird ein Fehler oder eine Warnung erkannt, erscheint eine Fehlermeldung. Diese muss quittiert werden. Ist der Fehler nach der Quittierung immer noch vorhanden, wird er erneut angezeigt.

Sofern der Fehler behoben ist, die Fehlermeldung aber dennoch erscheint, kann durch folgende Maßnahmen der Fehler quittiert werden:

- mit Acknowledge Error unter Diagnostic ➤ Operating Status
- mit einem Software Reset unter Device Config ➤ Setup ➤ Service ➤ Reset Device
- 3. durch Aus- und Einschalten der Versorgungsspannung.

8.7 Fehlerstrom

Es gibt vier verschiedene Möglichkeiten, wie der Stromausgang im Fehlerfall reagieren soll:

- High: Halten bei >21mA.
- Low: Halten bei <3,6mA.
- Hold: Halten des letzten Messwerts.
- Value: Halten bei einem gewählten Wert zwischen 2 und 22 mA. Der entsprechende Wert muss in Error Current Value (siehe Seite 3-297) definiert werden.

Beispiel für High

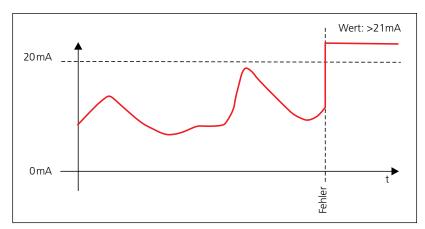


Bild 8-1 Beispiel für High

Beispiel für Hold

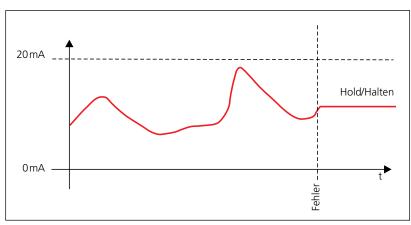


Bild 8-2 Beispiel für Hold

Inbetriebnahmeprotokoll

Aus Gründen der Übersichtlichkeit werden in der folgenden Liste nur die Parameter aufgeführt, die entscheidenden Einfluss auf das Messsignal haben.

Alternativ zum Ausfüllen der nachfolgenden Liste können die Daten auch digital, über das HART $^{\otimes}$ -Signal, übertragen und ausgedruckt werden. Siehe hierzu *Kapitel 1.5*, "Parametersätze archivieren", Seite 3-251.

► Tragen Sie die Parameter nach der Inbetriebnahme in folgende Parameterliste ein, um die Inbetriebnahme zu protokollieren.

Messstellen-Nr.	Datum	
Isotop	Aktivität	
Strahler-Nr.	Detektor	
Produkt	HV	

Pfad	Parameter	Einheit	Standard / typisch	Einstellung
Devic	e Config ▶ Meas Para	ameter ▶ Meas Data		
	Background	cps	50	
	Lower Point	cps	300	
	Upper Point	cps	95	
	Time Const	S	0.63	
	Threshold	%	64	
	Threshold Cps	cps	169	
	Hysteresis	%	6	
Devic	e Config ▶ Meas Para	ameter ▶ Meas Settings		
	Nuclide	Cs-137 / Co-60	Cs-137	
	Switch Function	MAX / MAX BUILD UP / MIN	MAX	
	Evaluation Mode	AUTO SET / MANUAL	AUTO SET	
	Cal Method	1-POINT / 2-POINT	1-POINT	
Devic	e Config ▶ Meas Para	ameter ▶ Build Up Alarm	1	1
	BU Alarm	INACTIVE / ACTIVE	INACTIVE	
	BU Time Constant	S	25	
	BU Delay Time	S	1800	

·	mM/DD/YYYY hh:mm:ss cor Configuration ► Se 0 50 AUTO / MANUAL V		
ode e	hh:mm:ss sor Configuration ➤ Se 0 50 AUTO / MANUAL V	0	
ode e	sor Configuration ► Se 0 50 AUTO / MANUAL V	0	
ode e	0 50 AUTO / MANUAL V	0	
e	AUTO / MANUAL		
	V	AUTO	
	V		
	V		
	V		
Setup ▶ Sign	al Condition ▶ Signal I	Parameter	
lling	NORMAL / SENSITIVE	NORMAL	
ınction	LINEAR / DISCRET SWITCH	DISCRET SWITCH	
ocked	ON / OFF	OFF	
Setup ▶ I/O	Setup ▶ Current Outpu	ıt	
op Montitoring	DISABLED / ENABLED	DISABLED	
т Туре	HIGH / LOW / HOLD LAST VALUE / VALUE	HIGH	
ent Value	mA	22.00	
wer Limit	mA	3.80	
per Limit	mA	20.50	
	<u> </u>	1	
	Setup ➤ Sign Iling Inction Ocked Setup ➤ I/O Op Montitoring In Type ent Value wer Limit	Setup ➤ Signal Condition ➤ Signal F Iling NORMAL / SENSITIVE Inction LINEAR / DISCRET SWITCH OCKED ON / OFF Setup ➤ I/O Setup ➤ Current Output Op Montitoring DISABLED / ENABLED In Type HIGH / LOW / HOLD LAST VALUE / VALUE ent Value mA wer Limit mA	Setup ➤ Signal Condition ➤ Signal Parameter lling NORMAL / SENSITIVE NORMAL unction LINEAR / DISCRET SWITCH DISCRET SWITCH ocked ON / OFF OFF Setup ➤ I/O Setup ➤ Current Output op Montitoring DISABLED / ENABLED DISABLED HIGH / LOW / HOLD LAST VALUE / VALUE / VALUE ent Value mA 22.00 wer Limit mA 3.80

Pfad	Parameter	Einheit	Standard / typisch	Einstellung

3

Notizen:

Änderungen im Zuge technischer Weiterentwicklung vorbehalten.					
© BERTHOLD TECHNOLOGIES GmbH & Co. KG 2009 05.2025	Sprache: Deutsch RevNr.: 06	Printed in Germany			

BERTHOLD TECHNOLOGIES GmbH & Co. KG

Calmbacher Str. 22 D-75323 Bad Wildbad Germany www.Berthold.com Band 1-3 Index

Α Ι ADR-Vorschrift 1-157 Identifikationsnummer 3-318 Inbetriebnahme über HART®-Kommunikator 3-327, ADR-Vorschriften 1-157 Anschlüsse 2-197 3-329 Inbetriebnahmeprotokoll 3-373 Anschlussklemmen 2-197 Automatische HV-Kontrolle 3-273 Instandhaltung 2-203 IP-Schutzart 2-171 Isotop 3-266, 3-272, 3-335 Background 3-270, 3-287, 3-349 Beförderungspapiere 1-157 Betriebsarten während der Messung 3-370 Jahresdosis 1-142 Betriebsdauer 1-148 Blindstopfen 1-112 Kabeldurchführungen 2-172 Kabelverschraubungen 2-172 Conduit Seal 2-196 Kalibrieren 3-331 Kalibrierwerte 3-373 Kommunikation 2-164 Datum 3-266, 3-272, 3-335 Konfigurieren 2-164 Detektor prüfen 2-211 Kontrollbereich 1-142 Detektorcode 2-175, 3-273 Kristall-Multiplier-Kombination tauschen (für Punkt-Detektor-HV abgleichen 3-333 detektor) 2-210 Detektorkommunikation 2-167 Kühluna 2-183 Detektorschutz 2-191 Kundendienst 2-214 Detektorverhalten bei Fehlern 3-362 Dichtheitsprüfbescheinigung 1-158 Dichtheitsprüfung 1-149 Leerabgleich-Bedingungen 3-351 Dichtheitszertifikat 1-149 Leitungseinführungen 2-166, 2-195 Diebstahl 1-146 Leitungsquerschnitt 2-172 Diebstahlsicherung 1-145 License Key 3-304 Dosisleistung 1-157 М Master Reset 3-347 Mechanische Belastungen 2-184 Elektrische Installation 2-195 Elektronik 2-215 Menüstruktur 3-255 Elektronikeinsatz tauschen 2-207 Messanordnungen 2-170 Elektronikzugang 2-167 Messprinzip 2-169 Messstellen-Nummer 3-317 EMV 2-171 Entsorgungskosten 1-158 Montage 2-179 Erläuterungen 3-349 Montage der Abschirmung 1-141 Ersatzprüffläche 1-150 Multiplier 2-211 Erstkonfiguration 3-265 N NaI-Kristall 2-211 FACTORY RESET 3-304 NaI-Punkt-Detektor 2-212 Fehlerbehandlung 3-361 Netzanschluss 2-197 Fehlerquittierung 3-370 Netzteil 2-166 Fehlerstrom 2-198, 3-371 Nomenklatur 2-176 Fehlersuche 2-205 Nulleffekt 3-270, 3-287, 3-349 Feuer 1-146 FM 2-196 Parameterliste 3-373 Fremdstrahlungserkennung 3-354 Photomultiplier 2-211 Funktionale Abläufe 3-345 Plateaumessung 3-309 G Plateaumessung durchführen 3-345 Gehäuse 2-171 Plateauprüfung 2-212 Gerätenummer 3-318 Potenzialausgleichsschiene 2-201 Prüfungen der Kristall-Multiplier-Kombination 2-213 Punktdetektor 2-218 HART®-Kommunikator 3-248 Punktstrahlertausch 1-153 Hintergrundstrahlung 3-270, 3-287, 3-349 HV-Default abgleichen 3-333

Index Band 3

R

Radioaktives Material 1-158 Reparatur 2-203 Reparatur einschicken 2-215 Reset 3-369

S

Schaden 1-146 Schutzleiter 2-196 Schutzleiteranschluss 2-201 SensSeries anschließen 2-199 SensSeries tauschen 2-205 Service 2-203 Servicetechniker 2-214 Sicherheitsvorkehrungen 1-145 Sink-Mode 2-198 Softkey 3-250 Softwarestände 3-357 Sonnenschutz 2-184 Source-Mode 2-198 Special Form-Bescheinigung 1-158 Stabstrahler-Anordnung 2-170 Start-Menü 3-261 Störfall 1-146 Strahlenbelastung 1-143 Strahlenbelastung beim Strahlertausch 1-151 Strahlenbelastung während der Montage 1-142 Strahlenschutz 1-135, 1-137, 1-139 Strahlenschutzbeauftragter 1-146, 1-148 Strahler 2-168, 3-267, 3-288, 3-335 Strahlernummer 1-149 Strahlertausch 1-151, 3-281 Strahlertransport 1-157 Stromausgang 2-172, 2-198, 3-298, 3-371 Stromversorgung 2-172 **SW RESET 3-304** Szintillationszähler 2-211 Szintillatoren 2-173 Szintillatorgröße 3-273

т

Technische Daten 2-171
Technische Zeichnungen 2-217
Temperatur 3-301
Typenschild für Abschirmung 1-148, 2-191
Typenschlüssel 2-176

U

Uhrzeit 3-266, 3-273, 3-335 Umgebungsbedingungen 2-184 Unfall 1-146 UN-Nummer 1-157

V

Verhalten bei Stör- und Unfällen 1-146 Verlust 1-146 Verschließmechanismus der Abschirmung testen 1-144 Vibrationen 2-184

W

Wartung 2-203 Wasserkühlmantel 2-183 Werkseinstellungen 3-333 Wetterschutzdach 2-184

Z

Zählraten einlesen 3-357
Zeit 3-266, 3-273, 3-335
Zerfallskompensation 2-167, 3-266, 3-272, 3-335
Zubehör 2-235
Zündsperre 2-196
Zweipunkt-Kalibrierung 3-340

54733-20BA1S 05.2025 Notizen:

Änderungen im Zuge technischer Weiterentwicklung vorbehalten.						

BERTHOLD TECHNOLOGIES GmbH & Co. KG

© BERTHOLD TECHNOLOGIES GmbH & Co. KG 2009

Calmbacher Str. 22 D-75323 Bad Wildbad Germany

05.2025

Germany
www.Berthold.com
Id.-Nr. 54733-20BA1S

Sprache: Deutsch

Rev.-Nr.: 06

Printed in Germany